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Introduction

T;'e present study was performed to Investigate the problem of

people in conflict over goals. With its -,idespreaa occurrence within

and bactween nation-.tates, conflict: ant itts 'aduction, have become mlajor

areas of research. Although war is the most severe type of conflict it

is by no means the only type. The cold war, conProntations on college

campuses, and political conventions are also t,,ps of conflict and gIv-1

just as much Imretus to this .,esearch as do the w-ars In the Middle East

and Vietnam.

With the exception of the internatlon simulation game (GQuet:knw,

1962; Burgess and Robinson, 1969; and Hermann and Hlermann, 1969•), the

research on conflict and cooperation has gqnerally involved the use of

very abstract, and relatively simple gamin9 paradigms (prisoner's

dilemma, chicken, parchcei, political conventic•,. and the Deutsch and

Krauss trucking game). The underlying premise of the research us~nq

these simple, rather artificial laboratory games Is that it i. necessary

to understand the basis of conflict ir, its m.ost elementary fortn before

it is possible to explain and contro' con.lict In the reai wctld.

For this paper, 't is assumed that conflict exists whnne'ter at

least two participants are in a situatior; !n which oay orie car. fully

achieve his goal. A more detailed discussion oF confl!cr Is presented

below but for the present this roug), definition wuil suffi,.e to categorize

situations as cooperative or conflictive. The former are situitions io

which all parties can achieve their goals simultaneously, and the latter

are sititions in which, at best, each party achieves only a pottion of
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his goal and, at worst, no party achieves any part.

I% the real world, situations vary in the; degree to which they

manifest conflict. These conflict situations *ange along a continuum

from cooperative (negotiated settlement of differences, formation of

a coali-'on against a third party, etc.) to pure conflictive (war).

The various experimental paradigms used to study conflict and cooperation

reflect these degrees of conflict. Presented below is a selected sum-

mary of these paradigms that starts with games at the cooperative end

of the continuum and ends with the games at the conflictive end.

Those types involving the least amount of conflict are the parchesi

game (Vinacke and Arkoff, 1957; Vlnacke, Crowell, Dien, and Young, 1966;

and Vinacke, Lichtman, and Cherulnik, 1967), the political convention

(Chertkoff, 1966; Mitz, 1969; and DeYoung and Phillips, 1970) and the

internatlon simulation game mention previously. The first two types

were designed primarily to study coalition formation, and therefore lit-

tle conflict is generated in either game. The last type was designed

to simulate nation-state interaction and, thus, conflict was a possible

result rather than a necessary condition of the situation.

The parchesi game, used most extensively by Vinacke, presents sub-

jects with the opportunity to form a coalition which will Insure them

of winning the game and thus sharing the payoff. The three participants

are assigned a certain amount of power, if no coalition is formed the

p~ayer given the most power will win. This paradigm forces the partici-

pants to form a coalition if they want to win. Although the subjects are

in conflict over the goal, they are presented an opportunity to cooperate

and divide the payoff (partial fulfillment).
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The political convention game is very similar to the parchesi game.

The three or more participants are assigned a certain amount of power.

For any one to win he must possess a majority of the power in the game.

Generally no one player has a majority and, therefore, for anyone to win

he must form a coalition. This is in contrast to the parchesi game in

which the strongest participant can win alone if no coalition is formed.

The difference between the two paradigms lies in the reason for forming

a coalition; in the parchesi game the only rational strategy for two af

the three players is to form a coalition, while in the political conven-

tion they are required to form a coalition.

These two paradigms mirror the cooperative end of the real world

cooperation-conflict range described previously. Two of the three

participants are required to form a coalition to receive a share of a

divisible payoff, thus partial, simultaneous achievement of the goal.

The amount (degree) of conflict is small while cooperation is high.

The internation simiation oame differs from the parchesi and

political convention paradi.5,-., and all subsequent paradigms, in the

unstructuredness of the situation. The participants can produce sit-

uations which cover the full range of conflict type situations from

cooperative to com'pletely conflictive. The advantage of producing all

possible outcomes, however, limits the analysis and therefore the con-

clusions that can be drawn from the data. The situation does, however,

offer a starting point since it can be used to formulate hypotheses

which later can be tested in more rigidly controlled experimental settings.

Host cf the reseach in the area of conflict has centered on the

mixed-motive situation, using various types of games as experimental
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parazigms. Of those games that have been most widely used to study

scme aspect of conflict, the prisoner's dilemma (Bixenstine, Potash,

and Wilson, 1963; Bixenstine and Wilson, 1963; Lave, 1965; Oskamp and

Perlamn, 1965; Radlow, 1965; Rapoport and Chani~ah, 1965; Sampson and

Kardush, 1965; and Evans and Crumbaugh, 1966), the Deutsch and Krauss

trucking game (Deutsch and Krauss, 1962), and the chicken game (Scodel

and !Iinas, 1960; Sermat and Greyovich, 1966; Lnd Ells and Semat, 1968)

have been the most widely used. All three of these paradigtrs employ

two people, and provide an opportuiity for the participants to cooperate

with each other. This is accomplished by giving them a choice of per-

forming one of two actions, with differential payoffs for each combination

nf choices made by the two participants. The general type of payoff

matrix for the prisoner's dilemma 3nd the chicken 5a.me Is presented in

Table 1. Since the trucking game does not involve simultaneous choice

by the participants, a payoff matrix is quite difficult to construct and

therefore is nct presented.

Matrix I In Table 1 is the general matrix, with each cell identi-

fied by a capital letter to allow for easier ;dentification. Matrix 2

.n the same table presents the general payoff matrix for the two paradigms,

j the numbers I and 2 designate the two alternatives. These two alternatives

and the relative values of the 'high" and 'low' payoffs differ between

the two games. Following is a brief characterization of each experimental

paradigms' paso,' matrix. A more detailed presentation of these types

of payoff matrices has been made by Rapoport (M53, 1963) and Rapoport

and Guyer (1966).

In the prisoner's dilenma, alternative "1" is the choice of cooper-



Table 1. General 3nd Particular Payoff Matrices for the Prisoner's
Sile mia ahs Chic'cn Garics

,tatrix 1. A General Mlatrix with Each Cell ldent;fied by a Capital
Letter

A' B

C

liatrix 2. A General Payoff Aatrix for the Prisoner's Dilemma and
Chicken Games

Y
j ' 1 2

1 .high high
high lowSX
high low

latrlx 3. A Particular Payoff tatrix for the Prisoner's Dilemma

Y
I 2i I •+1o0 +15ý

Matrix 4. A Particular Payoff 'Iatrix for the Chicken Game

Y
I2 S, • _.• +10€ -- _ +15¢
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ating with the other player, alternative "12" is the choice of defecting

to the police. In cell A, both players cooperate and receive +10t; in

cells B and C, onj player cooperates and the other defects, resulting

in -10t for the cooperator and w-15l for the defector; in cell D, both

players choose altern3tive 2 and receive a "50. The preference struc-

ture for player I is .3 > A >D >C, while player Y's preference structure

is C >A >D > . 1lhere the preference structure is the order in which

the players desire the outcomes in the particular cells. Given the

above structure, player X prefers the payoff in cell B to any other

payoff, and prefers any other cell's payoff to the payoff of cell C.

The point of interest, in the choice structures, Is the congruence of

the second preferences. It is this congruence that allows for cooperation

between the participants.

In the chicken game alternative "I" is the cooperative choice and

alternative '1211 Is the noncooperative choice. Thus, In cell A, both

players cooperate anA receive +!00; in cells B and C, one player co-

operates, while the other does not, resulting in the cooperator re-

ceiving -10t and the noncooperator receiving +15t; and in cell D, neither

cooperates and both receive the highly negative outcome of -100€. The

preference structures for the two players are as follows: X: B >A > C >

D; and Y, C. >A >B >D. The difference between the prisoner's dilemoa

and the chicken game is the ordering of the last two preferences for

the two players. In prisoner's dilemma the payoff in cell D is preferred

by both players ovet the payoff in 8 for player Y, and C for player X,

while In chicken payo? D is the least preferred outcome for both players.

In terms of theipayoffs, the difference between the prisoner's
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dilemma and the chicken game is the relative sizes of the low payoffs

in the two low cells for each player. In the chicken game the low

payoff in the low-low combination (cell D) is much lower than the Icw

payoff in the two high-low combinations (cells P and C). This is in

contrast to the prisoner's dilemma where the low payoff in the high-

low combinations (cells B and C) is much lower than the payoff in the

low-low combination (cell D).

In general the mixed-motive payoff matrix (matrix 2 Table 1) can

be described in the following manner; one combination of choices results

in a low payoff for both participants (cell D), one combination in a

moderate payoff for 3oth participants (cell A), and the remaining two

combinations result in a Io payoff for one participant and a high

payoff for the other, with the receiver of the high payoff reversed

;i the two high-low conditions (cells B and C). Thus the payoff matrix

allows fe" .ooperation, by providing a cell in which both participants

receive a moderate payoff, and conflict, since any movement from the

cooperative cells results in a lower payoff for at least one participanZ.

11nst of the studies performed with these two paradigms, as with

the pdrchesi and political convention paradigms, have been concerned

with Lhe .. ;-nsioris of cooperatiu- rather than the exploration of con-

flict. Little rese,-Lh has been aimed at the interpersonal process

that arises when people are placed in a situation in which they have

no opportunity to cooperate and, therefore, must compete. This type

of pure conflict (no cooperation between participants), represented in

the real world by nuclear war and the duel to the death, has been

labeled pure uelative conflict by Cole and Phillips (1969) and Cole,
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Phillips, and tf3rtman (in preparation). Uelative conflict is defined

as a n participant system in which there is a sikjgle, indivisible pay-

off for all participants. This means that at most one participant can

receive the payoff (achiLve his go-l) and all may lose. N~ote that it

is not a zero-sum game since there is the possibility that all parties

may lose, but it does contain a constant sum condition in which when one

person wins, all others lose.

This type of conflict falls at the extreme Qnd of the cooperation-

conflict continuum defined previously. 0Jo cooperation between partici-

pants is possible because the payoff for each participant is not

divisible. This is an important aspect of the situation; It is the

indivisibility of the payoff which distinguishes pure conflict from the

mixed-motive, or cooperative type situations (Bouldlng, 1963; and

Schelling, 1969). N~o player is able to achieve a partial goal; either

he achieves his total goal or he achieves nothing.

An experimental game paradigm, the truel, has been designed to

study this extreme conflict situation. Introduced by Shubik (1954)

and subsequently emplcyed by 1Jillis and Long (0957) and revised by

Cole (1969, 1970), the truel is a game involving three p!-.yers, each

of whom begins the game with a particular number of points. Prior to

the start of each game, the experimenter assigns a certain number of

points nd a label to each player. The game itself consists of a num-

ber of moves. On each move each player must destroy a point belonging

to one of the other players. This is accomplished by each player

secretly indicating his attack choice to the experImenter, who, when all

three players have indicated their choices, announces who attacked whom
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and removes a point from the attacked player's total. This procedure

allows each player to make his choice independently, without the

knowledge of who is going to attack him on that move.

The game continues until only on. player has points remaining.

He is the winner of the game. If the two players renaining, when the

first player is eliminated, have the same number of pjoints, or if all

of the players are eliminated on the same move, the lame is a tie with

no player declared the winner.

The payoff matrices for the three person prisoner's dilemma

(matrix I), a three person chicken game (matrix 2), and a truel in

which all three players have one point (matrix 3) are presented in

Table 2.1 The values presented in each cell represent the payoffs to

the participants. The first component in the vector in each cell re-

presents the payoff for player X, the second for player Y and the third

for player Z. The cells are labeled from A through H and the preference

structures for the three players are listed below each matrix.

As thp three preference structures listed below matrix 3 indicate,

each player has two types of outcomes; a most preferred and a least

preferred. For the three players there are no points of congruence for

the most preferred cells and only two points of congruence for the least

Note that the truel is a three person game, vinile the other two
paradigms have generally been two per on. The payoff matrix for the truel
is a 2 x 2 x 2, while the payoff matrix for the other two paradigms is
usually 2 x 2. Iowever, for the purpose of comparison, the prisoner's
dilemma and the chicken game were expanded to a three participant system
and, thus, their payoff matrices were expanded to a 2 x 2 x'2.IV

IL
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Table 2. The Hormal Payoff Matrices for the Three Person Prisoner's
.)•e r•ma, Chicken, and Truel Games.

,atrix 1. Prisoner's nilemra

IP.ayerJ_ Y 27 2
) I n

A I r ,
I o 5)1 2 (+1s,-1o,..lcj (-5,-;,-lo) (..,-l,,-5) (",-1,-•) I

- E F G t

Player X: F > A > F a = H > G = C = n) Alternative I = cooperate
Player Y: rk > A > D = F - 14 5 C = E - r, 2 - not cooperate
Player Z: C > A > D - G - H > n a r - F

:latrix 2. Chicken Game

Player 7: 1 2P/ayer.Y I -•-.. 2 .. _ I 2 -

I (+10,+lO,+ *) (-o0,+15,-0) 1(-l),-10,+l)0,-
X I A nc_ _ _ _ C_ _ _ l

2 . 1 0,- 1-.0) -100, - IOn, - O)1(..l 1 .. n ,.I no) I.-no,..?• .l n

Player X: E > A > nI - C = D > F I - '1 Alternative I coomerative
Player Y: R > A > C - E = G, > D ==F = IH 2 - not cooperative
Player 7: C >A > TI = r = F > 0 = G - II

Matrix 3. Truel

Pay-e r Zy X to;
, P a y ~e r Y _ X z : ,, , . .

Y (-1O,-10,+15) (-10,-l0,-10) (10,-l,-I ,+I5) (+15,- 0, .-1 ) ))
A F3 01

I (-Ilrl,+5-10 (-Oll) (.-1o,-+,-5,)(÷ls,-Io,-lo)
C F G

Player X: D - H > A - r, - C = E - F ' G
Player Y: F F >A - B3 C = I = C H
Playe~r 7: A = C > R, - n - F - G - 1
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preferred cells. Player X prefers cells D and H to all other outcomes

while player Y prefers cells E and F to all others and player Z prefers

cells A and C to all others. It is the dichotomous preference structures

and the noncongruence of the first preferences caused by the indivisibility

of the positive payoff, that makes this si'uation one of pure conflict.

A comparison of the payoff matrices for the two mixed motive para-

digms with the payoff matrix for the truel reveals the differences

between tie three types of paradigms.

in both matrix I and matrix 2 the three person prisoner's dilemma

and chicken game, respectively, alternative "I" is the cooperative

choice and alternative "2" the noncooperative one. As was pointed out

in the discussion of the 2 x 1 payoff matrix, there is a common second

choice for all of the preference structures. The difference between

the chicken game and the prisoner's dilemma is the ordering of the last

two sets of preferences. These orderings can be compared in Table 2.

Those preferences of the same value in the matrix are treated in the

preference strbcture as being of equa! desirability. The difference

between the mixed-motive situation and the pure conflict situation is

the absence in the latter's preference structures of a common point in

the orderings for the three players.

The truel gape has the bas~c requirements for uelative conflict:

ane inability of the partizipants to achieve their goals (winning) sim-

ultaneously.2 In the actual playing of the game the motivat'on for

2 It might be argued that the basis of all conflict is the belief
of th.- participants that they cannot achieve their respective go3ls
simultaieously.
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winning is assumed to be instilled by a monezary reward for doing so.

Uith motivation established, and an indivisible payoff structure, with

at most one winner, the truel satisfies all of the requirements for

uelative conflict.

This paradigm has two important properties in that it can be ex-

tended to any number of players, and it characterize- the oure conflict

situation, which has been ignored to the present time. By breaking the

conflict situation down to its most basic elements, however, the paradigm

overlooks factors that affect conflict situations. Some of the. factors

that are ignored are: (1) the effect of secondary goals, (2) the

formation of coalitions, and (3) the ability of the participants to

avoid the conflict situatio,,. Despite these and other limitations

that introduce some degree of artificiality into the situation, it

seems an excellent starting point for the investigation of pure conflict.

The Investigation of Conflict through the Truel

One aspect of pure conflict that is quite easily investigatcd

through toe use of the true! is the effect of power distributions upon

the conflict process. If it is assumed that the number of points

possessed by each of the players represents the power of that player,

then any distribution of points can be classified according to the

eight types of power Jistr.; uz.os ýcfi-d ý,y 17`71w (1•J, UJ9, :Ind

1968) and Dresented in Table 3. Although Caplow only aiialvzed the

consequences of each of the distributions for the cooperative type of

situation, an extension to the pure conflict situation may prove pro-

fitable. In an attempt to discover some of the consequences of the

various power distributions, several of them representing Caplow's
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type 2, type 3, and type 5 were constructed. The exact distributions

are also presented in Table 3 and are discussed in more detail later.

Another aspect of conflict that can be investigated through the

use of the truel is the detes"ninants of attack choice, i.e., the reasons

why a player will choose to attack a given other player on each move of

the game. Since in a truel, each player is forced to make just such a

choice, and he must do so with a limited number of cues availabe it is

Table 3. Ci.plow's rlassific3tion of Types of Power )istributions
,nJl tVie istriutions Used in t'hn _:,Pcrinent.

Types Power Distributions Distributions of Points

1 A - B = C f!O2:E

2 A >B = C (A <(B + C)) (24,9,9)

A < B = C (19,19,4)

4 A >0B C (A >(B + C)) Il___E

5 A > B > C (A <(B + C)) (22,9,3) (20,9,7) (I1,,,6)
(10,9,5) (133,17,4) (17,15,4)
(16,13.4) (15,11.4) (14,9.4)

6 A > B >C (A >(B + C)) [IOIJE

7 A >B >C (A= (B + C)) HIIONE

8 A > B = C (A= (B + C)) __OiE

possible to present a limited set of possible bases for this decision.

i/hen persons engage in uela.ive conflict, they have many cues upon which

to make their decision of whom to attack. 'lithin the truel this set of

cues is reduced to a finite number, with those cues being immediately

present or from several moves previous. Several of the possible attack
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strategies that may be used are presented below.

A player may attack the player who attacked him last, or he may

attack a player who had not been attacked In several moves. A player

also may alternate his attacks from one player to another or continually

attack the same player. Several such heuristics may be used by the

participants in selecting an attack choice. Although these heuristics

do not seem to be the most rational approach they still may be used by

the players to make their decision. However, If it Is assumed that

the participants In a truel are rational, then strategies of play rather

than heuristics of attacks would be the most likely to be employed.

Phillips, Hartman, and Klein (1970) presented three strategies of

play that might be used by participants in a truel: (a) the fair play

strategy; (b) the threat minimization strategy; and (c) the dyadic

competition strategy. The fair play strategy assumes that a player at-

tacks the stronger of his two attack choices. This means that the

strongest p layer- attc,:.•s -.,•:n;; tron,.-st.-.n l-~.. •:s+.-r.n,* v.ltlhl rd

str.te~y, a player m.n;-es tCi attrizk that minirii.'-s the tOrn.it to his

survival. It is not t:Oe cas. that this is )Ism/s thO' stron-;,. of the

two attac!: choices. !:t . a bzen dv,=nonstraVt-.d '. ;y an.1 :'lllips (1967)

thit th._* strongest player is In u' oos!tlon ;./her2 'i-e is lik!;ly to be

tne object of the other .tw ptayer's att.-.:':s. T>,ý striC.Inst player

attac!s thc .Jaa.est player !ecause tOls pl'•r Joe- Just as ric- .Ma.e

31d is re.m.ove.-I frog the ja-ie -ora lui:ýIM/ t",n1 is the 5, ec.,)m stronj.Jst

player. 3y e'irinrting tWhih ,13kCest ?layer irJ ,.us reducing3 the nLiber

of attac:,s nade on hir., the strongest :)1,y/er -Ini !zes te tOra.nt to

his survival in the fewest number of moves. The threat minimization

-I". ... CI y
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strategy for ti other two power posltions results in the same attacks

as in the fair play strategy with both players attacking the strongest

player.

In tne dyadic competition strategy thJe players attack that player

I who is closes, to them in the power structure. Both the weakest and the

strongest players would attack the middle power position. The person

in the middle position would attack the player--sometimes the strongest,

sometimes the weakest--whose power was closer to his own.

Shubik (1954) pointed out that when the participants in a three

person duel differ with respect to power, the more rational strategy

is to attack the stronger of one's two attack choices (the fair play

strategy). With respect to the truel, the power of a player is the num-

ber of points he possesses and thus, for each player, a more rational

strategy is to attack that player of his two attack choices who has the

greater number of points. The assumption, that all three players employ

the fair play strategy, was used to build the mathematical model of the

truel (and therefore of uelative conflict) presented below.

A ".odel of Attack Choices

A one parameter model is proposed :o account for the interpersonal

process that operates when three pesons engage in a truel. The model

generats all predictions using the estimated probability (P) of at-

tack.,,j the stronger of each player's two attack choices. If the two

attack choices of a player have the same number of points (power), a

probability of attacking each player is set at .50. The set of three

numbers representing how many points each of the three players has is

called the distribution of points. This distribution is represented by
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a three component vector, with the numbers a, anged in a decreasing

order of magnitude. As an example, if one player had 13 points, another

7 points and a third 20 points, the vector representing the distribution

would be (20,13,7).

A characteristic of the process that is of interest is the pattern

of choices made by the participants on each nove of the game. Since

on every .move each player is reqoired to .,ttack one of thM other ýwo

players, it is possible to characterize combinations of attacks within

the truel in terms of who received an attack. The set of three attacks

made on any one move is called the attack vector, with each number in

the ve(:vor being the number of times a particular player received an

attack on that move. The order within the vector is one of decreasing

strengtF, i.e., the player wLh the most points is listed first in the

vector and the player with tOe fewest points is listed last. For ex-

ample, if the distribution of points was (10,9,B) an attack vector of

(2,1,0) would indicate that the player with 10 points had been attacked

twice, the player with 9 points had been attacked once and the player

with 8 had not been attacked at all. After this combination of attacks

the distribution would be reducej to (3,3,3) because two points were

taken from the player with 10 points, one point from the player with 9

points and none from the player who had 8 points. In the true] there

are seven such 3tLack vectors and they are presented In Table t.

There are two characteristics of interest in eac'-, distribution of

points. They are called the dispa-ity of relative strengths and the

projected level of equality. The disparity of relat;ve strenqths is

discussed at length here, and the explanati. - jf the projected level of

'I
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Table 4. The Seven Possible Attack Vectors

1 J J-1 K K-1 L L-1

1 2 0 1 1 0 2

II 1 0 2 2 0

1 0 2 2 0 I 1

equality folilows.

The disparity of 4iative strengths (DRS) is a term u;ed to describe

how far apart the players are in the number of points they Drssess.

The term can be quantified by using the differences between the players

as the index of disparity. For example, the (10,9,8) distribution has

a lower disparity of relative strengths than does the (15,9,3) distri-

bution. lot only is this evident from visual inspection, but the index

of the DRS is (1,I) for the first distribution and (6,6) for the second.

The index was calculated by subtracting the second component from the

first and then subtracting the third from the second. These two dif-

ferences were then placed in a two component vector to give the DRS for

each of the distributions. Further, it is possible to sum the two

components to obtain a scalar quantity that gives z rough index of the

DRS for any distribution. Later, an easier method for determining the

DRS is described.

To simplify referencing, each attack vector is given a single

letter label. The letter I is assigned to the (1,1,1) attack vector

to indicate that this attack vector, when applied to a distribution of



points, maintains the differences that exist between each of the three

players. In other words, the I attack vector maintains the disparity of

relative strengths.

Of the six remaining attack vectors, the vector (2,1,0) is ass;gned the

letter J. J-1 designates the (0,1,2) vector since it is the only vector

that, when applied to a distribution of points, returns the disparity of

relative strengths to the level held prior to the application of the J

vector. The sum of a J and a J-1 attack vector is (2,2,2) or two I vec-

tars, which by definition maintains the disparity of relative strengths.

The remaining attack vectors are assigned letters by the same process. A

vector is chosen and assigned a letter and the attack vector, that when

added to it maintains the DRS, is given the iný. -se of that letter. All

of the vectors and their labels are listed in Table 4.

The projected level of equality (PLE), the second characteristic of the

distribution or points, describes the nearest point at which all of the

players w'i!l have the same number of points. The PLE can only be calculated

for distributions in which the sum of t. components is divisible by three.

It is only these distributions that can be reduced to equality through com-

binations of three attacks and therefore by the application of attack vec-

tors. Ai example of a distribution that cannot be reduced to equality by

attack vectors is , . o combination of attacks can reduce this

distribution- co another distribution in which all the players have an equal

number of points. The attack vector which brings it nearest to equality is

the (2,1,0), or J vector. After the application of this vector the distri-

bution is reduced to (3,2,2), and after the second application of this vec-

tor, and the necessary rearrangement, the distribution is reduced to (2,1,1).

At this point the application of any attack vector will end the game,
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since any additional attack must eliminate either one or two (but not

all three) of the players. Since three points must be taken away from

the triad on any move, and there are four points remaining, it is not

possible to reacý an all equil state before one of ths players is elimin-

ated. The projected level of equality of a distribulton is that dis-

tribution which is the nearest all equal distribution. The PLE of a

distribution is characterized by a single number, the number of points

each player would have if the nearest all equal distribution were

reached. The (01,9,7) distribution, for example, has a PLE of 7, be-

cause after the application of two J vectors the distribution is re-

duced to (7,7,7).

The distribution of points which any triad begins a truel is called

the initial distribution. If tiis distribution is divisible by three

then it can be described by a sequence cc attack vectors. Any subse-

quent distribution (those caused by attacks made within the triad) is

then described by the sum of the attack vectors used by the triad and

the sequence of attack vectors used to describe the initial distribution.

Thus any distribution of points whose sum is divisible by three, can

be described by a sequence of attack vectors. 3 This sequence is com-

posed of the attack vectors used by the tr~ad in the playing of the

game and the attack vectors used to describe the Initial dist lbution.

This sequence is called the decomposed distribution of points. The

sequence with the I attack vectors deleted is called the deleted decom-

3The necessity of having thc fJistri'ution divis.ible 5y three is
discussed later.
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posed distributino.of points. Later these zwo sequences will be shown

to be uonposed of at nmst two attack vectors. rhis reduction results

t from the relatimonshios between attack e"r that are discussed next.-

Thern..are certain relationships that exist between attack vectors.

If two attack vectors, a and b. when applied to a distribution, have the

same effect as another attack vector, c,'added to the I vector and then

applied to the same distribution, then the two vectors, a and b, are

defined as reducing to the Lhird vector, c. The reduction is based on

the :act that the two vectors, a and b, have the same effect on the dis-

parity of relative strengths as does the single attack vector, r- The

application of the single aLack vector to a distribution does not result

in the same distribution as the appiicatinn of the two vectors; it is

only the differences between the players that a-e the same :n the two

dist;;butions. If the I vector is applied to the distribution of the

single vectwr. c, then the number of points controlled by each o; the

players would be the sai,,e as if the two vectors, a and b, had been ap-

plied. The rule for reducing a'ttack vectors is given in terms of their

labels. Any two vectors raised ti- the same power (1, or -1) and of dif-

ferent letter will reduce, when added together, to the vector of the

remaining letter raised to the inverse of their common power. An ex-

aample of a reduction i5: J + K C 1
, o," (2,1,0) + (1,0,2) (1,1,1) +

"(2,0,1) or I + L 1. Since the I vector has no effect on the disparits

of relative strengths, the difference between the disparity of relative

strengths of 14e o-'-,nal distribution and the distributicn resulting

from the application of the J and K vectors is equivalent to the dif-



21

ference that the L-l vector alone would produce.4 The resulting dis-

tribution of points, after the application of the LC vector and the I

vector, is the same as the distribution resulting from the application

of thc J + K vectors. All of the attack vectors and their relationships

are presented In Table 5.

With the definition of the attack vectors, the definition of the

disparity of relative strengths, and the rules for the combination and

reduction of attack vectors, it is now possible to describe whole

distributions of points in terms of two attack vectors. Since itLr Is

not possible to add more than two vectors together without two of them

being of the same letter and therefore combinable, or of the same power

and therefore reducible, a two component vector will suffice to character-

ize any distribution of points. Because the attack vectors are combined

on the basis of their effect on the disparity of relative strengths,

this two component vector defines the minimum number of attack vectors

necessary to reduce the distribution to equality. The sum of these two

components Is a simple index of the DRS for any distribution. This two

,,. lement vector is called the state vector.

When.given . distribution'of ioilnts, it !. -i.:i ' . .

the state vector of this distribution and the constituent attack vectors.

The state in which ,,'I the players have the same number of points Is de-

fined as the (0,0) state vector. With this definition it is now pos-

sible to describe how to calculate the state vector of a distribution.

If one starts from an all equal state, the state vector of any subsequent

4iThe equal sign indicated that the elements on each side are equal
with respect to the DRS.
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Table 5. The Relationships Metieen Attack Vectors

Combinations:

2.. 0 2 1 1 1 I I I
I+1 I + 1 2 + 0 = I+ 1 0+ 2 1 + 1
,1 2 1 1 I 1 1 2 '0 1 1

, +J-1= fi L +L-l= I + I K +K= I + I

Reductions : Summary

2 1 2 1 0 1 0 1
I + 0- 0+ I I + 2= 2+ I J + K L
0 2 1 1 2 u I 1

J -I+K- L
J + K =L'l+ I J'l+K" L + I

2 0 1 1 0 2 1 1
I +2=2+ I I +0= 0+ I J +L K
0 1 0 1 2 1 2 1 K
J + L =K7+ I J-l+L'l= K + I

I 0 0 1 1 2 2 1 -1
0+2=1+1 2+0 1+1 K+L=J
2 1 2 1 0 1 0 I I

"-K I KIL= j
K + L -J-+ I K'+"1= J + I

All Possible rypes of States 2

(2J -K) (2J 1 ,L) (2K 1 ,J) (2K1 ,L) (211 ,J) (2L- ,

(2.1,K" 1 ) (2J,L I) (2K,J- 1 ) (2K,L" ) (2L,J I) (2L,K" 1)

IThe numbers r..present the components of the attack vectors.
21f the two components are equally represented, for example

(2J-1 ,2L), row one represents all possible types of states,
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distribution is the reduced combination of all the attack vectors used

to produce that distribution. A few examples of distributions and

their state vectors should clarify the concept. If the first five

moves after an initial state of (0,0) were; J, K, K-1 , L and K, then

the state vector of the resulting distribution would be (0,0). The

above result is arrived at by the following sequence of reductions;

J + K - L"! then Ll + K"1 = J, J + L = K-1 K"1 + K = I. It is through

a sequence of reductions such as-this that one determines the state of

a distribution. Further examples are given in Table 6.

If one does not start from an all equal distribution the problem of

finding the state of the distribution is complicated by t'ee fact that

the state of the initial distribution is not known. Since it is im-

possible to calculate the state of any subsequent distribution without

knowing the state of the initial distribution, it is necessary to have

a method by which this initial state may be determined. One such method

is to add to the distribution the attack vector which produces the maxi-

mum reduction in the disparity of relative strengths.

The state of any initial distribution is the reduced sequence of

attack vectors, which when added to the initial distribution produces

the nearest all equal distribution from which the initial distribution

is reachable. Again an example should clarify the point. If the Initial

distribution is (10,9,8), the attack vector which reduces the disparity

of relative strengths the most is the (0,1,2), or J-1 vector. 'Ihen the

J-I vector is added to the (10,9,8) distribution, the resulting dis-

tribution is (10,10,10), the nearest all equal distribution from which

the (10,9,8) distribution is reachable. The state of the initial dis-
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Table 6. Eyamples of the Detcrminatior of the State of a Distribution
with an Initial State of (0,C)

Initial State (0,0)

Attack Vectors: L, L, K1 , J, i

Reductions: (0,0) + L * (L,O)

(L,O) + L (21.,0)

(2L,O) + K 1  = (2L,K- 1 )

(2L,K 1) + J = (2K-I,L)

•2K 1 ,L) + ji = (2L,K1)

Resulting State (2L,K- )

State Vector (2,1)

Initial State (0,0)

Attack Vectors: J, j-1, L, K

Reductions: (0,0) + J = (J,0)

0,O) + J-I (0,0)

(o,o) + L = (L,O)

(L,O) + K (J-Y ,0)

Resulting State (j-1,0)

State Vector (I ,0)
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Table 7. Exanples of Obtaining the Initial Stite of a Distrlbution

Initial Distribution of (10,10,7)

(10,10,7) + (0,1,2) = (10,11,9)

-I = (j-.I,o)
J- V1 ,0110,11,9) + (l,0,2) =(ll~l

(J- ,0) + K . (J-, K)

Initial State is (J- 1 , K)

State Vector is (1,I)

Initial Distribution of (13,8,6)

(13,8,6) + (0,1,2) = (13,9,8)

j-! = (J- ,o)

(13,9,8) + (0,1,2)= (13,10,10)

(j-l,o) + j- I =(2J-1,o0)

(13,10,10) + (0,1,2)= (13,11,12)

(2J'1,0) + j- = (3J ,o)

(13,11,12) + (0,2,1) = (13,13,13)

(3J 1 ,o) + L = (3J' 1 ,L)

Initial State is (3jiL)

State Vector is (3,1)

I'



2 6

tribution is (J 1,o). (Further examples of the determination of initial

states are presented in Table 7.)

All distributions subsequent to the initial distribution are described

by the reduced combined sum of the initial state and a!l the attack

vectors produced by the triad. (If the sum were not reduced it would be
$

the decomposed distribution of points discussed earlier.) An example of

the determination of a state when the initial state was not (0,I) fol-

lows. If the initial state was (2JW ,K) and the attack vectors produced

by the triad were J,K and L the resulting state would be determined by

the following reduction sequence; (2j' ,K) + J = (J- ,K), (J0 ,K) + K-1 =

(J- 1 ,0), (JW ,o) + L = (J- 1 ,L).5 Thus the resulting state would be W -1,

L). 'lore examples of the determination of a state when the initial state

is not (0,0) are presented in Table 8.

Ta'h le P.

Examples of the Determination of the State of a Distribution
with an Initial State Other Than (0,0).

Initial States (j-,0) (2J" ,L)

Nttack Vectors J, K, L L , J, L

(J 1,o) + J = (0,0) (2j- ,L) + C-l = (2J-!,O)

(0,0) + K K (2J-1,0) + J = (J-I,o)

(K,o) + L = (J*l,o) (0-,0) + L = (J- ,L)

esulting State (J-1 ,o) 0(J1,L)

tate Vector (1,0) (.,I)

5 Again the equal sign indicates equality of DRS.
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The resulting reduced sun of attack vectors constitue the state of

the distribution. This state will be coriposed of a sinjle type of attack

vector, or some conbin3tion of two types of attack vectors. These two

types will be any two vectors of different letter and power. (All pos-

sible states are listed at the bottom of Table 5.)

The number of each type of attack vector in the state of the dis-

tribution, when listed without the type of vector, is designated the state

vector. The state vector, then, is the pair of numerical components of

the state of the distribution. Ry convention the larger of the two com-

ponents is ilsted first in the vector. There are only two types of state

vectors: a pure state in which only one type of attack vector is needed

to characterize the distribution, and a mixed state in which two types

are needed.

At this point it is necessary to make an assumption about the re-

arrangeahility of the power positions within the triad. It is assumed

that it is of no importance which player is ?n which power position over

the course of the game. It, during the game, a power position switches

from one player to another, the states are treated as if the same player

was in that position throuqhout the game. This results in a distribution

of points always being listed in a decreasing order, reqardless of which

player is in each position. The rearrangeability assumption allows for

the considerable simplification of the model which follows.

1Iith the stipulation that the distribution of points always be

listed in decreasing order of maqnitude, all state vectors have J-1 as

a basis. It is clear why this is so when one looks at the J 1 attack

vector, (0,l,2), and considers the rearrangeability assumption. '1hen the
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distributions are arranged in descending order, any pure state vAll be
soenme fJ vectors. Fo- instance a 40 state representing a

distribution of (5,13,9) when rearranged as (13,O,5) is a 4J- state

(four times (n,1,2) equals (0,4,n) added to the distribution results

in a (13,13,13), the nearest all equal state.

All mixed states also have J as a base, aqain due to the rearranne-

ability assumption. For example, a (3,1) state vector composed of (31-!,

K) could represent a (12,10,15) distribution. Upon rearranement it

becomes a (0,115,13) distribution or a (3J" 0) state. The state was

determined in the same manner as all previous states have been. by

adding the attack vector which produces the qreatest reduction in the

disparity of relative strengths until an all equal state is reached.

,Iy distribution can be rearranged so as to have J-I as a basis. As a

result of the rearrangeability assumption, only three types of attack

vectors are used in the mixed states (j'l, K or L) while only one is

used in the pure states (J- ).

Probability Equations for Each Attack Vector and Possible Transitions

Each attack vector is produced by a unique combination of attacks,

with the exception of the I vector which is produced by two such com-

binations. [ron these unique comhinations of attacks, equations pre-

dicting the probability of any attack vector occurrina are derived hy

constructino a probability trce, with P being assigned to the probability

of attacking the stronger from any decision point. The tree is shown

in Figure 1. The letter designates which player is making the decision.

It Is assumed that x > y> z.
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Beczusa there are only seven attack vectors, each state vector can

be transformed to a maximun of seven different states. 11 (11j) desilMntes

; •any arbitrary state vector, then the seven possible states after the ap-

PI ! plicatirn of each of the attack vectors listed in Table 4 are: (i,J),

0t+11j). (1-1,J). (l.J+l), (OJ-I), (I-I,J+I), and (i+t,J-I).

Which transition Is produced Is determined by the types of attack

vectors which make up the state, and the a.ttack vector which Is applied

to ,t. Different attack vectors have differential effects on different

"states. For instance a state vector composed of (2J. ,K) will go to a°• -I

(2,0) state vector with the application ot a K attack vector, but a

(2j ML) will go to a (2,1) with the application of the same K"1 attack

vector.

If the state has a zero as the second component (pure state) then

at most five states are reachable from it, since both transitions re-

suiting in a state with J-1 as the second component are, by definition,

nonexistent. 9o attack vector when applied to such a state, can reduce
the second component (0) to a J-I or -I. A -1 has no meaninq, since it

implies that a negative of an attack vector Is needed to describe a

distribution.

The all equal state Is the exception to the above transition states.

Only two states are reachable from the (0,0) state and they are the (n,O)

and (1•0) states. It Is quite clear why this Is so, since no transition

state which has a i-I, or a J-I as an element Is possible. As stated

above, no attack vector when applied to a (0,0) state, can prodaI-e a -1

In either position. The application of any attack vector, except the I

vector, increases the state of the distribution fron (0,0) zo (1,0). The
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sum of any attack vector added to 0 Is the attack vector. The (1,0)

state also has a restricted transition range with the (I-I ,j+) state

Sbeing undeinc9, duw to the rzstriction t.uzt tOc larg.st e*••,t'b-

listed first in the vector.

SAs was mentic..ed previously, the all equal state has transition

probabilities that are Independent of the estimate of P. Since all of

the player.e have the same number of points in this state, they are assumed,

for attack purposes, to be indistinquishable from one another. Since

they are Inclstinguishable, the probability of attackinq either of the

attack choices for each player is .50. As was stated above there are

only two states reachable from the all equal or (0,0) state: the same

(0,0) state or the (1.9) state. The (0,0) state Is reachable only

through the apDlication of an I attack vector, of which there are two

(see Figure I). The prubability of each I vector is .125 (.50 for

each of the three decision points In che tree). The total probability

of remaining in the (0,0) stati is the sum of the two I attack vectors,

or .25. The probability of going to the only AT-•r r•:ich.b)3 state,

the (1,0) state, is one minus the probability of remaining In the (0,0)

state, or .75.

The equation for any transition from a state Is determined by the

attack vector or vectors which produce that transition. The attack

vectors which produce each transition and the resulttna equations are

shown In Table 9. 111th J-1 heing the basis of all of the states onlo

:his single sot of equations Is needed to predict all possible transi-

tions. Although the K, L, K, L attack vectors produce different

transitions on mixed states depending on which attack veýctor ( K or 0)
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is the second component of the state vector, the resultinn equations

are the same due to the fact that the K and L vectors have the same

equations, as do the K and L vectors.

This transition table offers a qeneral framework within which data

can be analyzed. All of the types of states encountered in a set of

data would be listed in the first column of the table and the frequency

of each transition from these states would be indicated in each cell.

The cells could then be compared with respect to the observed and ex-

pected frequencies using a chi-square goodness of fit test. The ex-

pected values are calculated from the predicted probability of the transi-

tion (calculated using the estimate of P from the data and the tran-itlon

equations presented in Table 9) and the marginal frequency for each state.

The Iodel Aximotized

t'ow that the model has been described, it is axiomatized to pre-

sent its logical organization. 6

Definition 1. The three numbers representlnn the number of points

each player has is called the distribution of poinits. This distribution

of points is the three component vector D.

Definition la. If the distribution of points is arranjed so that

the three components are in a decreasing order of magnitude, the vector

will be called the ordered distribution of points f)n*.

Definition lb. The differences which exist between the three

components In the vector D* are called the disparity of relative strengths

simpler Ai4omization of tOiis model w:s fornulated by Fhilllps,
Klien, and Hartman (1970).
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and Is represented by a two component vector (ij) where 1 Is the dif-

ference hetween the first two conponents, and J is-the difference be-

tween the last two.

Definitlon 2. The attacks on any single move are represented by a

three component vector called the attack vector, V, with each compon-

ent being the number of times that a particular player was attacked on

that move. The complete list of attack vectors Is givpn in Table 4.

Lerma 1. Any distribution of points with a sum that Is divisible

by three can be represented by the sum of a sequence of attack vectors.

Definition 3. The sequence of attack vectors that constitute a

distribution of points is called the decomposed distribution of points.

Definition Ii. If all I attack vectors are removed from the de-

composed distribution of points, the residual attack vectors constitute

the deleted decMosed-distributin of points.

Theorem 1. The I attack vector is the only vector whlch natr&elns.

the disparity of relative strenqths. Given-any distribution of points

0 with components (j,kL), and a disparity of relative strenqths

vector of the form (",n) where J - - m, aor'{,- I - n then the appli-

cation of any arbitrary attack vector with the cotponents fy,.z) results

In the distribution (j-x, k-.y,L-z) and the DRS vector would be formed

by (j.x) (k-y) - J -- x -- k + y and (k-y) - (L-z) - k - y - L + z. For

the DRS of thK distribution to be maintained the foilowildg must be true.

I j x "k + y n j - k

2 J k x+y jJ-. k

4 x y



5 and; k-y- L+z-nr k- L

k k L-- y+z =k- L

y Z

From It and 3, x - y - z is r • only way the DRS Is ,aintained, the

only attack'vector for ,ihich this is true is the I attack vector with

(1,10), all other :,ttack vectors have as components a 1, a 0, and a 2,

definilt!y not equai

Lemma ". For a given distribution of points, D', the correspondlnq

decomposed distribution of points and the corresponding deleted decom-

posed iistribution of points are said to be equivalent with respect to

the disparity of relative strengths (DRS) of that distribution.

This follows from the definitions of the I attack vector and the

disparity of relative strengths, definitions lb and theorem 1.

Definltion 5. If two uectors are equivalent with respect to IRS,

that is, the D)RS vectors for the two vectors have the same. values in

the correspondinq positions, the equivalence will be denoted It *.i J

Lemma 3. The Identity rule,

I + V - V where V is any attack vectcr. Th's result follows directly

from Theorem I and Definition 5.

Lemma 4. ihe complementation rule:

V + VI I I where V is any attack vector. Th;s result follows from

the definitions of attack vectors in Table 1.

Lemma S. The combination rule:

nV 4 It a (n+l)Y where n is any positive integer and V is any attack

vector. This result follows fron definition 5.



Lemma 4. The reduction rules:

SJ + K =L"' j-I + K-I L

S~~-1L-
J+LL K JI+ L K

K + L J j-I K- + L" j.

These rules follow from the definitions of attack vectors In Table

1, from the laws of addition for vectors, and from Lemma 3.

Theorem 2. A deleted decomposed distribution of points has, at

most two distinct non-zero attack vector components.

Proof:

Let 1 and R be two distinct attack vectors such that T 0 R 1, and

such that they are not reducible under Lemma 6. Consider a deleted

decomposed distribution of points, D, such that r) - nT + nR.

Let us add an attack vector to D that is distinct from T, that is

not T"' and that is not reducible in combination with T under Lemma '.

kIe call this vector S.

If T is a mtmber of the set J, K, L, then S must be a member of

the set J , K-, L in order to meet the above conditions.

However, a must also be a member of the set (j- 1 , (K', L*l) In

order to meet the conditions that have been place,' on R.

Therefore, R and S must be reducible under Lemma ý. Similarly if

T is a member of W , L L) then both R and S must be members of

(J,K,L) and must be reducible under Lemma A. Thus the theorem Is Droved.

Definition 6. The positive integers associated with the two dis-

tinct vectors in a deleted decomposed distr;bution of points constitute

the components of a two component vector which is called the state vec-

tor S. If all players have the same number of points, S - (0,o). A
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pure state has a state vector in which at most one comoonent Is non-

zero, A m:xed state has a state vector in which both components are

non-zero.

Definition 7. In each state the largest component is always listed

first.

Definition q. Those two attack vectors which are in the deleted

decomposed distribution of points are those attack vectors which when

added to the vector !) , produce the nearest all-equal state. In other

words these attack vectors reduce the disparity of relative strengths to

0 in the fewest number of steps,,

Theorem 3. Fach deleted decomposed distribution of points has j-i

as Its largest component.
-1

This follows from the definiton of the J attack vector, defini-

tions la, lb, and 3, and from theorem 2. Since the distribution of

poInts D has its components in a decreasing order of magnitude, the

attack vector which reduced the DRS to I in the fewest number of steps

Is the J I or (0,1,2) attack vector.

Theorem 4. The second component of the deleted deconnosed dis-

tribution is a 0, a K or an L. It follows that if it is a pure state

the second component is i n. If It is not 0, then, from Lemma ( and

Theorems 2 and 3, it must be in the set (K,L).

Theorem (. Each state can be transformed to a maximum of seven

different states. Given an arbitrary state (ij) the reachphle states

are (ij), (il ,J), (i+l ,j), (W+ ,j-1), (i ,j- ), (i ,j+l), and (i-l,J+l).

This follows from the fact that there are seven attack vectors.



Axiom 1. On any given move, the probability of a player attacking

either of his attack choices is independent of previous moves.

Axion 2. Two players with the same number of points are indiscrim-

Inable to the third player, and thus each will be attacked with pro-

babifity .50.

Definition 9. Let T be a strategy that identifies, for each triad

member, his more preferred attack choice (1PAC). The sole basis for

the choice of 'VPAC is the number of points associated with each player

so this identification holas only if both players are distinquishable.

Axiom 3. Each player attacks his iPAC independently of the other

players' attacks and with probability P. Also each player attacks his

less preferred attack chilce (LPAC) independently of the other players'

attacks and with a probability of I-P.

Axiom 3a. P is greater than i-p. (P Is greater than .50)

Lemma 7. P is invariant over power position.

This follows directly from Axiom 3.

Lemma 1. P is invariant over games.

This follows directly fron Axiom 1.

Axiom 4. P is invariant over all distributions of ooints.

Lemma 01. In the all-equal distribution the players are indistin..

quishable from one another, and the probability of each player attackinn

either of his choices is .50.

This follows directly from \xiom 2.

Theorem 7. For any strateqy T, each player attacks his '1PAC in,

dependently and with probability P on each move of the (ame.

I .w - m m
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This follows directly from definition 1 and axions I and 3.

Theorem I. The theorem on rearranr-eability:

Any distribution of points, 1, can be rearranged so as to obtain

an ordered distribution of points 0 , after each move, without affecting

any player's IPAC, or his probability of attackinr the IPAC.

By Axiom 1, each move is equivalent to an initial move, and by

definition ', the choice of 'IPAC depends only on the distribution of

points. Hence the iPAC wiil not be changed by rearranqinr the dis-

tribution of points. From theorem 3, it is aoparent that if the '4PAC

is not changed, the probability of attacking him will not be changed

and the theorem is proved.

Axiori 5. The probability of the occurrence of each attack vector

is the joint probability of the occurrence of the attacks represented

by the three components of the vector.

Definition V). P(i) is the probability of attack vector I, where

the three components of the vector are (j,kl).

Lemma I0. P(i) - Pr(x) Pn(Y) p,(;:)

Iihere PR(X) P if player X attacks his ;PAC
I-P if player X attacks his LPAC

PR(Y) - r if player Y attacks his :iPAC
I-P if player Y attacks his LPAC

PR(Z) = P if player Z attacks his ;PAC
I P if player Z attacks his LPMC

This follows from definitions 1) and 11, axiom ', and theorems 3

and 4j.

Axiom . The nrobability of any transition from a state is the

sun of the probabilities of the attack vectors Mhich produce that tran-
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sition.

Previous Test of the 'lode)

Hartman and Phillips (lqc-) applied this model to a limited ;at

of data that consisted only of transitions from states that had a zero

as the second component (pure states). The results of the test were

inconclusive. The model fit the data only if the data points from the

first move of every game, were excluded. It did not fit the first move

data alone, nor all of the data with the first move data included.

Iartman and Phillips (10r1l) proposed that the bad fit of the first

move data was due to the proceJure used in the experiment. The crucial

point of the procedure was that the subjects were in a face to face

situation that allowed them to know which of the other players had

won the previous game. This qenerated the possibility that the subjects

were responding on the first iove to who had won the previous name,

rather than on the distribution of noints for that game. It was to

eliminate the interference of previous games anM to produce a larger

variety and number of data points that the present experiment was

designed.
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lethod

Subjects. Forty--three groups, each composed of three male under-

graduates were used in the experiment. The subjects were obtained

through a subject pool maintained by the rooperation/Conflict lesearch

x Group at lichigan State !Iniversity. The subjectS ha• been orininally

recruited through a newspaper advertisement offerinn to nay subjects

for participating in notivational research. The pool had been collectel

to provide a group of subjects who were hi-hly motivated to narticinate

in competitive qiame experiments. Since uelative conflict assumes a

desire on the part of the participants to achieve their goal (winning

in the truel), these subjects appeared better suited for the experinent

than the usual subjects obtained through introductory psychology courses.

The subjects were called one week prior to the beginninq of the

experiment and asked to participate. If they consented to narticipAte,

a tine convenient for all parties (the three subjects and the experimenter)

was arranqed.

'then the subjects were called they were told that the exoeriment

was a three person name in which they coull win up to three dollars for

the one hour. Inly if they asked, were t'ey toll that the minimum was

75t. 'que to the importance of havinq everyone appear at the anreed upon

time, the imnortance cf fulfilling the obligation was strcssed.

Settinm and materials: The expe-'iment was conducted in a snail

room with a rectannular table in thr. center. In top of the table was

a wooden partition which divided tOe table into four sections.

Finure 2 is a diagram of the partition and table.
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a a

Player on Player in Player on
left of the the middle riaht of the
experimenter experimenter

Figure ?. The Diagyram of the Table Partitions: Tnn 'I i q.

The partition was constructed so that suhjects were able to see

the experimenter but not each other. The panels between the subjects

(labeled "a in the diagram) were 31 inches high and '4 inches wide.

The panel between the subjects and the experimenter (labeled "-' in

the diagram) was 10 inches high but varied in width for the three

different positions. The center position had a 11) inch openinq while

the tvo end positions had 15 inches each.

To standardize the exoerimental situation, it was necessary to

give each of the three su'jects a label, with the entire set of three

labels remaining constant over all groups. In previous gaminj research

the labels A-r-C and "AF-7FJ-Y)V had been used for this purpose. To

find the least reactive label set, a pilot study was performed (Nartnan,

1971). The nost important result was that the label set A'"GW"-!•!.') '-

KqYPT!'l appeared to have essentially no response biases for su!jccts.

It was this set that was use,1 to represent the three players in all of

the games in the experiment.

To allow each player to indicate which other player he wished to

attack on each move of the game, three cards were placed in every

cubical with one label of the set appearing on each card. rach player

also had a wooden card holder on top of th• panel separating him frorm

the exnerirqenter into which the experi-ienter inserted a card with the
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label of that player. This card was in full view of the subject and

the experinenter but out of sight of the other two subjects. This

allowed the exoerirmenter to know the c.m'ilete distribution of labels,

and each player to know only his own label.

An abacus like arranGement was used as a scoreboard. It was

mounted above and behind the exoerimenter in full view of all of the

subjects. The labels were listed in a vertical line on the left s'de

of the scoreboard with the points for each label listed to the rinht

of it. The points were reoresented by circular discs ,nounted on a

horizontal rod. The points taken away fron each nlayer were olaced on

the rioht side of the scoreboard and covered by a wooden shield. Thus,

only the points still poss•ssed by a player were visible, with all others

concealed behind the shield. Figure 1 is a diagram of the shield and

the scoreboard.

11

b

qhie](4

S /*,_/ 3 The / / IIe / / ,/

Fig'ure 3. The Dian~ran of trhe Scoreboard.



Procedure: In order to produce a large number of data points,

eleven different Initial states were used, ten of which had a non-zero

second component (mixed states). All of the distributions and their

correspondinr, state vectors and orders of presentation are listed in

Table 10. Because each state vector from (50,) to (5,S) represented

different disnarities of relative strengths, ranging from 5 to I0, two

orders of presentation were constructed for the experiment. 1nne order

increased the DRS over the six games played, i.e., the triad began

with the (5,0) state and ended with the (5,5). The other order presented

the games in a decreasing order of DRS, beginning with the (5,5) state

and ending with the (5,0).

Table 10. The Eleven Initial States and the Distribution for
the Two Orders of Presentation.

CaeI T 5rderF" 1 31
F!umber "-rder.2 4 3 2
"State

Vector (5,0) (5.1) (5.2) (5.3) (5.14) (5.5) -_

D
11' 15 17 1 , Ir

s Type K
t 11 13 1 17
r
1 4 4 4 4 4 4
b
u
t 14 16 13. 2) 22 7.1
I

o TypeL q
ns 4 .5 3 7 9

4.

ECach group of subJects recel ,'d one of thn four conditions appearinm

in Table 10, with ten groups in eAch condition. The four conditions were

I
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created by two types of Initial states and two orders of presentation.

These four conditions were numbered from one to four. In condition

one, type K states vwre presented In order one. In condition two, type

K states were presented In order two. In the third condition, type L

states were presented In order .pne, nd in the fourth condition, type L

states were presented In order two. The conditions were presented in a

constant 1, 2, 3, 4, order over the first 40 groups, I.e., the first group

received condition one, the second condition two, the third condition

three and the fourth condition four, with this sequence repeated for the

remainder of the 4p0 groups

Since the labels were listed in a vertical line on the scoreboard

there was a possibility of a response bias due to the label position

on the scoreboard. To eliminate this possibility thE. labels were

listed on the scoreboard in the three different sequences presented in

Table Ii. For the ten groups In each condition the first label sequence

was presented four times, while the second and third sequences were

presented three tiheý, eacih. This procedure counterbalanced any effect

due to label position on the scoreboard.

Table I).' Tho-'.Throe oqtjancas of L-.bols on tht; ýccrcboar6 Used for
the Ten Groups In Lach Condition.

SE(~SEQUV4CE Sgji2 MiMCiI

ARGO?! DMflOf' KRYPTON
DORO! KrIYPT01l ARGOt
KRYPTO1: ARGON3 BflROtl

t Three groups had to b- roplace, ti'. ts total OF !^roups m3n*
ticrod pr-viously. or.; wi ll b-3 srId aout th.3 rer.n1conimt of Croup's in
thn. s-ctlon with Fh.' .or-.scntntlon of tho rnsults.



46

To eliminate possible individual biases of the subjects for a

particular laiel, each player was represented by each of the labels

once in each half of the experiment (once in the first three games and

once Jn the last three). '1ithin each group of subjects each label re-

presented each power position (the most points twice, the fewest twice,

ane the miadle number twice) once in the first half and once in the

second half of the six games played.

It the beginning of the experiment, the subjects were told that

they would play several games (an unspecified number), and that one of

the e games would be chosen at random to determine payment. The winner

of that name would receive the $3.10, the other two players each would

receive 7qc. Further they were told that if the game chosen had no

winner (a tie) then all three would receive 7'€ 2

A cylind-ical urr,, four inches hiqh and two and one half inches

in diameter was used to obtain the random draw. The six ganes played

were represented by the numbers one through six pasted on six poker

chips. The subjects were told that the six chips were placed in the urn,

but the experimenter, out of sight of thp subjects, put only those chips

into the urn which represented a game with a winner.

To cive each player an equal opportunity to win the three dollars

every player was assirned each power position twice. These assignments

were distributed such that the sum of the disparity of relative strenqths

for the two assifjnments o' each of the power positions for each of the

2 Although they were told t .ýs resulted in 311 three receivinn 75C,
in fact it was not true. Since iany 3f the subjects krew other people
in the subject pool, it was fe' that one of che subjects must receive
the $3.0) in order to maintain ie credibhi;ity of the reward, and to
make recruitment of subseqtjent subjects easier.
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3
players was 15. As an example, a player would be in the strongest

power position in the game with an initial state of (5,0) (nRS of q)

and in t fe gamer with an initial state of (5,S) (fPRS of 10), thus a total

of 15 for the two games in which he was in the strongest power position.

This means that the sun of the disparity of relative strenqths for the

two presentations of each power position was equal for all subjects.

After the subjects were seated at the table, the exoerimenter read

them the instructions (presented in Appendix), and all qjestions re-

garding the playing of the game were then answered. rach name was begun

by designating the distribution of points for that name and placinc

these points on the lert side of the scoreboard. The players were

then given their labels for that t-ame and the subjects indicated the

player they wished to attack on the first move of the game. 'n each

move of the game all players indicated their choice by holdinq up

the card with the label of the chosen player. The caro was held so it

was below the top of the panel separating the subjects but above the

panel separatinq the subjects from the experimenter. This procedure

allowed for simultaneous, concealed attacks. The game continued until

one pliyer was eliminated (ran out of points); the player with the most

points at this time was the winner, but if no player haa a plurality of

points the game was a tie.

1then each group finished the six games, the winner of the three

dollars was determined oy the experimenter shakinn the urn and drawinq

3The value of the DRS is taken as the simple index which is cal-
culated by addinq the two components in the state vector.
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out ine of the chips. The number on the chip represented a qawe, the

winner of which received the three dollars. The subjects were zhen

questioned as to their knowledge of the labels of the other players

during the games and also asked to verbalize their strategies in

playing the game. Finally the subjects were told the p:;rnose of the

experinent and thoroughly debriefed.

r
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Results

If the forty three groups recruited for the experkient only 41

were used in the data analysis. Group 13 was discarded because one of

the subjects had participated in a pilot study performed nine nonths

previously. This subject won the first three lames played and three

out of the four games which had a winner. The other subjects felt he

had an advantage and therefore the $4.50 was divided equally between the

players. This group was replaced by group 41. The 22nd and 36th groups

had to be discarded due to an error made by the experimenter in (at

least) one of the names. (The second game in group 22 was started with

the wrono distribution of points and group 3Y was presented with the

wrong sequence of labels.) Group 22 was replaced by group 42 and group

3T by group .

Although the major thrust of this section is to present the results

of the test of the fit of the model to the data, a !arqe portion of the

section is devoted to an extensive examination .nd analysis of the esti-

mated probability of attackinn the stronger of each player's two attac1

choices. Estinates of P were obtained for the th.-ee power positions in

every game played, resulting in 723 estimates (thiee power positions,

six games per group and 4) qroups). The estimates were analyzed from two

different points of view. The first approach w_ 'o determine the effect

of the initial state, order of presentation, of state, and power

position on the estimated value of P. The seý>! analysik focused on the

possible effects of garn' number, order of prest -,' ion, type of state,

and power position on the estimate of P. necause all distributions have

-l as a base, the different types of states are ieferrcd to as pure, ',
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or L type states.

nResults of the Inalysis on the Fstimates of P'

Before the results of these analyses are presented, it is neces-

sary to explain some procedural difficulties in the determination of an

estimate of P for each game and power position. Althouqh each game be'-

nan as a definite state, it did not remain in that state throughout the

entire game. This would not be a problem if the type of stite remained

the same throughout the game, for instance if the qame benan as a nixed

K and remained a mixed K. However, several times throughout the exper-

inent the type of state switched from one type to another (either K to

L, or L to K). To solve this oroblen of nonhomogenous types of states

within each group, the estimates of P were analyzed according to the

type of state from which the attacks originated rather than according to

the type of state the group began with. In other word:, attacks made

while a group was in a K type state would be analyzed within the " type

factor, even if the initial state had been a type L state.

The first group of estimates, classified as a funciton of initial

state, power position, type of state, and order of presentation (increasino

or decreasinn) is presented in Table 12. These are the combined estimates

from all ten groups in each condition. The estintes indicate that there

It was necessary to separate the analysis of initial state from

the analysis of 03ne number because the initial states were confounded
with lame number. This meant that each ga,,: number was one of two initial
states and each initial state appeared in two different qame numbers.
For example, the (5,0) initial state appeared in the first and last -ame
numbers and no others, while the first and last games represented only
initial states of (5,0) and (5,5). This confounding made it impossible
to analyze for either effect directly.
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are few differences between orders, or consistent trends over Initial

states. The exceptions to this are the first and third power positions

for the type L states, w.hern the decreasing order had consistently hilher

estimates than the Increasing order.

The estimates for both orders were then con'hined, resultinq in a

sinj1e estimate for each initial state, type of state, and power position.

The estimates are presented in numerical form in Table 13, and to make

for easier comparisons, In graphic form in Figures 4 to 1. The first two

figures compare the three power positions for each type of state (K or L)

as a function of initial state. For state type L (Figure 5) there was

a consistent difference between the three power positions, with the second

position having the highest estimate, the third position the second high-

est, and the first position the lowest estirrte of P. The same pattern

held for the type K states (Figure 4) with the exception of the (5,2)

state where the ordering of power positions was chanqed to a 3 > 1 > 2.

The differences between the power posit;ons for the type K states were

not as large as for the type L states, but they were consistently in

the same direction.

Table U." The Combined Estiritos of 'F Over )rdrs of:i'resentation for
Eac;i ?ower Position of 6ach Initial Stats and Type of State

Tyje of Sate_ K L
Power Position Power Position

- ,...47 37 .7- .Y5 .(s,•) .66 .92 .17 .41 7
(5,2) .32 .79 .87 .45 .4 .
(5,) .74 .. 85 .12 .50 .
(5,4) .73 .91 .7? .*3 .11
(5,5) .72 .77 .37 .7.
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The last three figures of this set (Figures 6 to 3) compare the

estimates for each power position of type K states to esch pcwer position

of type L states. The differences for power positions two and three

were quite small, with neither type having estimates consistently higher

than the other. The first pawer position for type K, however, had con-

sistently hiqher estimates than the corresponding power position for

type L st3tes. In none of the comparisons in this set were there consis-

tent differences over initial states.

To determine if the differences displayed in the figures were

significant, an analysis of variance was performed on the 720 estimates

of P (three for each of the six games played by the 40 groups). The

data were analyzed for type of state, order of presentation, power posi-

tion, and initial state. This resulted in a 2 x 2 x 3 x (1 design with

repeated measures on the last factor' and ten observations per cell. A

summary of the results of this analysis are shown i, Table 14. 1he table

indicates there was a significant main effect for power position, as

Figures 4 and 5 indicated. Siqnrficant iatir. effects were also identified

for type of state, order of presentation, and initiai state (labeled

9RS because each initial state had a different )RS, ran,.ino fron 5 for

the (5,0) initial state to l0 for the (',) injtiai state'. 5ignificant

effects were a)so identified for the first order interaction of power

position with state type, and the first order interaction of order of

presentation with initial state (ORS). All of these findings, with the

exception of the significant results for initial state, and the inter-

action of initial state with order of presentation, were indicated pre-
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Table 14. Analysis of Variance of the Order of Presentation, Type
of State. Power Position, and Initial State (nRS)

Source df "s F

Between Subjects

Power psotion (A) 2 1..31 12(-.412"

Type of State (P) 1 1.335

Order of Presentation (C) I n.57n 7.70,"''"

A X n 2 Q.7?7 22.117"

"A X C 2 M11'

"P x C I

A X B X C 2 0.0(0

Subjects within 'roups 10" 0.07r;

"i th in Subje~cts_

Initial State (ORs) 5 r.241 5.2?O)

A V 0 10 0.101

B v p•5 On'

C., X )5 O ' ,8 6

A 0• .1 T ' 0q,)7

A '•C X, nqn

r #n

P,. " C X n

A X X C X 0 10n~q1n

D X Subjects within 540 0l,flh"
( roups

Total rrror 711 0.091

;. < .00

L.0
ii | i 11-Ii



viously in the tables comparino' tle estimates.

The estimates of Tahle 12 were then arranned in terms of came num-

ber (first game played, second played, etc.) for each tyne of state,

power position, and order of presentation. The estimates in the first,

third, and fifth columns (those labeled incre3sin-) of Table 12 are iden-

tical for the two diiens-ions of game number and initial state (DrS).

The estimates in the decreasinq columns (the second, fourth, and sixth)

are reversed for the two dimensions, with initial state ('RS) increasinn

goinq down the table while qame number decreases. This was caused by the

confounding of initial state witi game number. This confoundinn results

in the comparison of the last aame in the decreasing order with the first

game in the increasing order.

The estimates of the two different orders of presentation for each

power position of the type K states presented as a function of initial

states were previously presented in Table 12. The two orders of Dre-

sentation can be compared as a function of game number using the same

table by comparing the estinates for the (5,0) state of order one (in-

creasing) with the (•,5) state of the decreasing or number two order of

nresentation, and then comparing the (q,1) state of order one with the

(3,4) state of order two, continuing until the final comoarison is rlade

between the (5,5) st3te of order one and the (5,') state of order two.

The comparisons indicated that there were no consistent differences be-

cween orders, nor a consistent trend oce, game number for any power

position.

The same comparison procedure that was used for the K typo states

was also used for the 1, type. As opposed to the K type states the L

kI
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type states indicated consistent differences between the two orders. In

power position one the decreasin- order had consistently higher estirlates

of P than did the increasinn order In power position two the decreasing

order had higher estimates in four of the six games, and in the third

power position the decreasing order ,ad higher estimates in five of the

six games played. Again no consistent differences were indicated across

game numbers.

The two orders of presentation (increasino and decreasinq) were

again combined producing 31 estimates of P (one for each power oosition,

game number, for each type of state). These combined estimates are

presented in Table 15. lecause the graphs of these estimates did not

differ from the qraphs of the estimates when presented as a function

of initial state, they are not presented here (see Fiqures ?i to 3).

Figures 4 and 5 compared the three power positions for each tyoe

of state as a function of initial state, however, they also illustrate

the relationship between the power positions for each tyre of state as

a function of name number. The three power position for type K are

presented in Figure 1, and the three for type L in Finure 5. Tahle 15

indicates that in the type " states, the same 2>3>1 orderin- held for

all but the third and sixth qames. In the third game the orderinn was

changed to 3>1>2, and in the sixth rame to 3>2>1. It will be noticed,

however, that the reversed estimates in both cases differed by less thin

.06. In general the 2>3>1 orderinq of oower positions held for the tyne

K states. Across games there was a consistent trend for all estimates

to loarease as game number increased.

r



Table 15. The Combined Estinrtes of P Over Orders of Presentation
for ,ch 2o'nw-.r Oosition of -- ch a:ri '4.ýr and Tyr- of
St it.,

Type of State K L . ...

Power Position Power Position
Fareilurber 1 2 3 1 2

T ..3,') .7(, .22 7 -
2 .6• .90 .'n9 .7 72
3 .13 -"n

4.72 .5 . r r .7 .07
.71 .93 .:4 hl, 92 -7q
.. _.13.37 f_ _ 9_ ._ _ __97 .__

Figure 5 presented the differences hetween the estimates for the

three power positions for state type L as a function of init'l state

but it also illustrates the differences found betveen these stimates

as a function of game number. These differences are indicated in

Table 15. 4ere aqain the same 2 > 3> 1 ordering of power positions was

found for all games but with no points of reversal as were found for the

type "I states, As was found for the type :( states, there was a sligjht

trend for the estimates to increase over game numbers for all power

positions.

Table 15 presents the estimates of each power position for the

type K states and the corresponding estimates for the tyne L states,

as a function of game number. As for the initial state anailysis (see

Figures 4 to 3), power position one showed the only consistent differences

between the two types, with the estinates for the other two nower posi-

tions varying little from each other. The estimates of the first power

position for type K were consistently larger than the corresponding

estimates for type L. The differences between thie two types rancges from

.12 to .44.

k • • • •
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To determine the significence of these trends an analysis of

variance was performed on the factors of order of presentation, state

type, power position, 3nd game number. This analysis resulted in a

2 x 2 x 3 x 6 design with repeated measures on the last factor and ten

observations per cell. The results of the analysis are presented in

Table K-. Sionificant main effects were found for all four factors. The

factors of power position, state type, and name nuwber were all sianifi-

cant beyond the .0005 level. The main effect for order was significaht

beyond the .01 level. Ine first order interaction was indicated with

power position interacting with state type at the .005 level of siqnifi-

cance.

As was mentioned previously, there seemed to be a consistent in-

crease in the estimates of P over game number, with the largest differ-

ences comingi between the first three games. To test the possibility

that all of the differences were located in the first two games, the

same analysis of variance was performed on the last four qames separately.

The design was thus reduced to a 2 x 2 x 3 x ý, with repe)ted measures

on the last factor and ten observations per cell. A summary of the

results of this aealysis appears in Table 17. This analysis indicated

a significant main effect for power position, state type, and order of

presentation. The main effects for pvower position, and type of state

were significant beyond the .0005 level, while the main effect for order

was sirnnificant beyond the .01 level., A sigjnificant first order inter-

action was also indicated for the Interaction of power position with

type of state, which had a probability of less than .01)0'. 'o main ef-

fect nor interaction effects with game number were indicated. This in-



Table 16. Analysis of Variance for Irder of Presentation, Type of
State, Power Position, and Gane "'urber for All aia-w-s

Source ,-f IS F

Betweer Subj ects

Power Position (A) 2 ". 431 17•. tl2*

Type of State (3) 1 1."35:.S*

Order of Presentation (C) 1 57) 7.7t

A X R 2 1.72!-

.1X C 2

B "X C I

A v 1, v C 2 '.06"

Subjects within Ctroups 10n 0.S75

,ti thin Suh)jects

riane flumber N9 • .:r,1 .t•

A X 9 1')

C. X, r) 5' 1-157

A ,.' 3 X r) 1')

A X C X fl 1,

X 'C X DC

A '3 '( C X D l• 0.37,

D X Subjects within 540
Groups

Total Error 71') 0.091

p <

P <j



Table 17. Analysis of Variance for Irder of Presentation, Tyoe of
State, Power Position, and 'ame "umber for Last Four Ganes

Source df S

Between Subject s 2

Power Position (1) 2 5.473 17.

Type of State (3) I .21 14.r5

Order of Presentation (C) 1 0.A'-4 7.871*

A X 7 1 .0k3 ln.1nP

"A X C 2 n.037

1 , C 1 0.I I

A X X C(r 2 0. l'.•g

Subjects within Groups 1.

s"ithin Subjects

Gane "umber (D)) 0.024

;• x 0 3 0.173

C 3 r) .

A X r X 0 6 ,0.014

A X C X D 6 71

93 " C X D

A " ,' C ' .9,.011

"n,. Subjects within 12 ,.
',roups

Total rrror 47" 5

*p< 1

•': <- .01



dicates that most of the variance was due to the First two games played.

This interpretation is further emphasized by the relative size of the

error terns of the six and four game analysis. The error term for the

last four games is almost one half as large as the error tirm for all of

the games. Thus one third of the data produced almost one half of the

error variance.

To test this interpretation a multiple comparison test was performed

on the estimates of P for the six game numbers. The test was designet'

by Scheffe' (1955) and described in Ftwards' (11"0). The result5 of

this test, presented in Table 11, partially support the hypothesis that

Table 13. The t' Values of tthe Multiple Comparisons of the Fstimates
of P for the Six , .ritc ......

Estimate Game
of P !umber 1 2 3 4 5
".597 1 - 3.79* 5r.q** S*70** (.lO** .2*

.704 2 ?.12 2.65 2,33 1.13

*7S4 3 . .21 .21

.79 4 ........... .. .('7 1.16

•77') 5 .... ....... •49

.756 -..

lean Snuare w~thin Subjects = .02'3 * n < .05

*p< .01

all of the variance was comiq from the first two names. qs the table

indicates, the difference between the first two names was sinnificant

beyond tVe .05 level whilp all other differences between the first qame

and the last four were sigrn.ificant beyond the .001 level. The second



lgame had no significant differences with any of the last four games.

These tests indicated that the differences were qenerated by the first

game, with little of the variance coming from the remaininn games. Al-

though the tests indicated that the second game was not sicnificantly

different from the last four games, its lower estimate of P and its

significant differences with the first game at only the .n5 level cast

doubt on the assumption that it was not played differently from the last

four games.

To test the hypothesis that the subjects had no response biases for

the labels used in the experiment, the number of attacks made on each

label was counted. rMy counting only attacks in which the attacker had

a choice between two players of equal power (points), and therefore in-

discriminable except for their labels, a who to whom matrix of attacks

was con3tructed (Table 19). These data were not completely independent

since each p!ayer could contribute more than one attack for each label.

Because only a few subjects contributed more than one attack for each

label, the non-independence of these few data points, out of a total of

30), would have i nenliiible effect on a chi square qoodness of fit test.

Therefore!, the test was performed on the data, with the assumntion that

the orobability of any label attacking either of his choices was qn.

The chi square for the entire table we's !.5? with three degrees of freedom,

The observed, expected, and chi square values are presented in Tables In

to 21 respectively. The fact that the chi square was less than the deorees

of freedom indicates that no response biases were present in the data set.



Table 19. The Observed Attacks lade by Each Label on rach of its
Choices

,Arg)n ~ orOn Krypton
A\rgon - ~ 155 1
R~oror, 3 127

'Krypton ____

Table 2n. The ExpecteJ V'alues for the "'urher of '\ttpcls on rach
Label's Choices, Assumring ýandon Pehavior

SArgonj _J or-on _Xyton u

,=ron j 3.
loron 1.5 P1 ~ 263t

_'Lryl2 ton h1' 2K5-j23

Table 21, The Chi,-Squares for Each L-3hel's Two .'ttac!' Choices

____ Crion- Roron Krypton~ SunsI rqon . T Aj T7T
lo ron .~.5

lry~pton 7-7__ ___

Sum for wholea table is ?,5" with d e(Irres of freelon
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Test of the Iodel

Although many data points were generated within the experimerst,

several cells in the following analyses had expected values of less

than one and sevwral more had expected values less than five. These low

values were caused by very low predicted probabilities for these cells.

T;iese cells violated the condition for the chi-square qoodness of fit

test, that no cell have an expected value less than one and only 20a of

the cells be less than five (Hays, l9r3). To guard against acceptinn

the model by using spurious data, due to the few cells with v3lues less

than one, the data were collapsed over particular types of states. "hich

states were collapsed together -;as determined by the number of transitions

possible from the state. For each of the following tests, all pure states,

excludinq the (0,0) and (1,0) states, were collapsed to form one transi-

tion state, the mixed states with equal components ((1,1) to (5,5)) were

collapsed, those differing by one ((2,1) to (r,4)) were collapsed, and

those differing by more than one ((3,1) to (5,3)) were also collapsed.

Each of these three types of mined states, and each of the three types

of pure states is characterized by a particular number of transitions

which are possible from it. The (0,O) state has two possible transitlons,

the (1,0) state has four possible, and all other pure states have five

possible transitions. The three types of mixed states are characterized

by four possiale -ransltions for the equal componer.t state, six possible

for the state whose components differ by one, and seven possible for the

states having components differing by more than one.

The chi-square ooodness of fit tz't was then applied to these col-

lapsed t onsition states, none of which had a cell with an expected value

L m m m m m m
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less than one. This was done for all of the tests that are presented in

this section. The results of the analysis on the collapsed data were

not different from the full analysis. Due to the similarity of the re-

sults and the fact that the full table provides a more detailed picture

of the results, only the results for the complete table and its chi-

square are presented. By presentineý the entire table rather than the

collapsed data, it is possible to determine more precisely the cells in

which the model does not fit.

Despite the invalidity of many of the assumptions of the model,

the test of the model was performed. The data were analyzed in the

general table discussed previously. Because so few data points occurred

beyond the (5,5) state only transitions between (0,0) and (5,9) were

used in any of the following analyses. The estimate of P was obtained

by dividing the frequency of attacks on the stronger by the tota; number

of attacks.

The frequency of all of the transitions in the data set are pre-

sented In Table 22, the expected valLes in Table 23, and the chi-squares

in Table 24. The estimate of P for the entire data set was .77. The

chi-square for the entire table was 524.26 with 99 de-rees of freedom.

The degrees of freedom were produced by I11 cells, 21 rows with marginal

constraints, and one estimated parameter. reecause the model did not 1,t,

the data were broken down in several ways in an aitenpt to find a set of

data that the model did fit,

As the a..alysis of the estimate of P consistently indicated, there

were differences between the three oower positions, between the types of

states and between the first two games and the last four. These differences
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directed a series of changes In the model, beginning with a change from

one parameter to three parameters, progressing to splitting the data by

type of state, and endino with only the data from the ;_st four games.

The results of these tests are presented in Table 25. For each disection

of the data, the chi square goodness of fit, and correlation coefficient

vere calculated. The chi-squares, their degrees of freedom, the correla-

tion coefficient, and the estimates of P used in calculating the predicted

probability of each attack vector and thus each transition, are presented

in Table 25.

Table 25. The Surnary Resuits of the Four Tests of the 'lode)

SData Set 1 2 3 Chi-squaie df r Ratio

'All Data .77 .77 .77 524.26 q.r9

K States . .8 3 127.67 07 .1 2.27

I*L States .'•2 .91 .31 257.72 97 .8r 2 . 97

K Types wlthcut
1Pure states .7T .'g .82 15.05 7? .ql 2.32
1

'L Types without
!Pure States .36 .90 .79 11•.47 (_0 .4 2.84

Pure States .55 .91 .'S '2.7q 17 .93 3.10

IK Last rames .72 . 9 .W 13A-.52 ý .3 2.05
L Last Games .40 .93 .2 I'V.73 $' .R5 ?.7'

SIure Last rames .63 .`3 .87 31.$7 17 .93 !.P8



-The introduction of a three paraneter 'iodel produced some problens

for the transitio!. equations. 1-e transition table hao previously been

sinplified by the fact that the equations for the crucial K and L vec-

tors were the same as were the equations for the crucial K-1 and C-I

vectors. As was mentioned earlier, these are crucial vectors because

they produce differential transitions depending on the type of state

of the triad. Because rearrangeability causes J~l to be the basis of
-l

all states, the J, J , and I vectors produce the s3me transitions re-

gardless of the type of state they are applied to. !then three para-

meters are introduced, the equations for the crucial vectors are no

longer tne same. 9ecause the equations for the vectors are not the

same, the equations for the transitions produced by these vectors are

not the same. The new equations for the attack vectors are presented

in Table 26, and the new equations for the transitions are presented in

Table 27.

Table 26. The Equations for the .ttjc!. Vectors for the Three Parameter
Iodel

Attmc", V:ectors Lquaaions

PR + Q - O.P _-7

"L r (0P( .-0)0
I,

L (v P)0

P = probability of strongest player attacling his 'IPAC
Q = probability of riiddle player attackinq his !PA•C

probability of weakest player attackinn his '!PAC
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The estimates of the three parameters for each of the separations

are listed in Table 25. These estimates show no consistent trend over

the various splits of the data. After the esti ates were made for each

power position separately in the first disection of the data (rows 2

and 3 of Table 25), the estimates remained fairly constant for each

type of st3te. The only consistent differences between the estimates

for the various disections of the data were the higher estimates for

all power positions for each state for the last tour games than the sane

estimates but for t'je entire data set.

The data were first split by separating all transitions from mixed

L states from transitions from mixed K states. The pure states were

divided on the basis of the type of state the remainder of the initial

states were for that group. For example, a transition tron a pure

state would be placed in the K data group if the initial states of the

remaining games were K, or in a L data group if the renaininn games

were -'s.

"As Table ?; shows, tho iodel aqain failed the test of havinn a

chi-square less than the degrees of freedom, with the type L data dif--

ferine considerably nore from the model than ti,- type K data. The chi-

square for the type ! was lq7.u7 and for the type L 2q7.71. both with

37 degrees of freedom.

The second splitting of the data, rows 4, , and ', was done by

type of state (pure, mixed ( or mixed L),. Again the model did not fit,

with a chi-square of 52.75 with 17 ,eegrees of freedom for the nure

states, a chi-square of 1S'.05 for the mixed K and l?4.47 for the mixed

L, both with 6, degrees of freedom.



The data were finally reduced to only transitions which occurred

in the last four games played by each groun (rows 7, ', and q). The

data were left in the three state form and a]; transitions which occurred

in the first two games were removed. The chi-square for the pure states

was 31.57 with 17 degrees of frPedom, for the mixed if it was WV.51

and for the nixed L 139.73, the later two had f' deorees of freedom.

The results presented in Table 7S are listed in a decreasina ordrr

of generality. As the data were split, and made less general, *he

chi-squares were reduced, however, as the chi squareE were decreased so

w•re the corresponding degrees of freedom. These nonconstant denrees

of freedom made. the interpretation of the decreases in the chi squares

difficult to make. To solve this difficulty the ratio of the chi-

square to its degrees of freedom was calculated for each test of the

model. These ratios are presented in the last column of Table 25. In

qeneral these ratios decreased as the data were split and made less

general. The only disection of the data that produced no reduction in

the ratios was the separation of the pure states from the mixed K and

mixed L states (rows 4, 5, and ,). These decreases indicate that the

fit of the model is imporved with continued separation of the data, hut

the fit does not improve enough to allow acceptance of the model.

In all of the tests of the model the chi-squares were larger than

their deqrees of freedom. After the initial snlittinq of the data the

transitions from each state became so meager that any test of the

model would be nrjninplý,ss. For this reason the search for a fit of the

model to the Jata was abandoned.

L
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Discussion

The extensive analysis of the estimates of P revealed that many

of the assumptions of the model were invalid. The invariance of P

over power positions, state type, initial state, and order of presenta-

tion were all called into quastion.

The main effect for power position was found in all of the analyses

performed. The significant effect for power position shown in the

analyses of variance and illustrated in Figures /I and I indicated a

2 > 3 >1 ordering of the estinatms of P for the three power positions.

The relatively low estimates for the first power position was due,

to the fact that each of the two weaker power positions could take away

one point, and therefore were equally threatening to the strongest

player. The weakest player had •, slightly lower estimate of P than did

the middle player. Althouqh it was to the weakest player's advant9ge

to attack the strongest player, both of the other two players were

stronger than he 3nd, therefore threatening to him. The threat of the

sL.-ongest player, however, was considerably greater than thai of the

second stronqest and therefore tOe weakest player attacked him more

often than re did the second stronges'. The second power nt"sition haa

the htq,,a:= estimate of P ir almost Lll of the games played. This hinh

estinate was cat-sed by the fact that the strongest player was by far

the -reatesL tlhreat to the second strongest player. As the estimates

show, the srcond power position attacked the ct,.nqest player in over

93V of the attacks made.

One oV the ,icst interestinn results of the experiment wac the ;m-

plicat~on that at least the firsi game and possibly the first tvo games
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were played differently from the remaining games. The Scheffe' multiple

comparison test showed that the difference between the first game and

the last four were significant at the .001 level and the difference

between the first and seconJ game was significant at the .1.5 level.

Although the second game did not differ significantly from the last

four games, the t' values of the Scheffe' te't for those differences

were all much larger than the t' values for the. differences between

any of the last four games. These t' values suggest that the last four

games were played differently from the first two.

The error variance that is produced by the f~rst two games is ap-

proximately one half as large as the error variance for the entire data

set, and the large differences between the first two games and the last

four indicate that this effect was very likely due to a learninn, effect

that was concentrated in tne first two games. The small t' values for

the differences between the last four games indicate that the estimate

of ", stabiliz-ed after the sacond game. This st?Wbllzation indicates that

any effect due to learning was eliminated after the seconi game.

The main effect for initial state is difficult Lo locate. "one of

the figures indicated any consistent trends over initial state for any

of the power positions. lecause there was a si-nificant effect for

game number, and game number was confounded with initial state, it is

possible that the significant effect for initial state was an artifact

of game number. The confounding of initial state with qame number

caused the (5,0) (5,1), (1,4), and (.,5) initial states to have lower

t-timate• of P than the (5,?) and (5,3) states. It was the former set

of initial states tOat occurred in tie first ard second game numbers for

I
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the two orders of presentation, and for this reason had lower estimates

of P than did those states which occurred in the third and fourth games

only ((5,2) and (5,3)).

The two orders of presentation were originally inserted into the

design to counter any effects due to game number. The assumption had

beea that the effect of game :.nTber would be linear, thus a lower esti-

mate of P for an initial state in an earlier game would be countered by

a higher estimate when that initial state appeared in a later game. The

fact that the effect of game number was not ifnear after the second

game caused the two orders of presentation to be ineffectual. Becau:'

the first two games, and thus the four initial states mentioned previously,

had lower estimates of P in one order of presentation and because the es-

timates of P asymptote at the third game and thus change little after

that, the initial low estimate 'or the four initial states cannot be com-

pensated for by placing them in a later game. The elimination of the

significant effect for game number by the removal of the first two

games, and the significant differences between the first game and the

remaining five, lend support to this interpretation.

The intera:ti ýetween initial state and order of presentation

was significant at the .0005 level. This effect would also seem to be

caused by tie significant effect of game n.nber. In the increasing

order the (5,O) and (5,1) states were in the first two game positions,

thus both had 'ow estimates of P, however in the decreasing order of

presentation these same states were in the fifth and sixth game numbers

and there;ore had high esti.oates of P. The states (5,5) and (5,4) were

in the same situation except they appeared in the ea.,lier games in tho

decreasing order and in the later positions In the increasing order,



79

Thus different orders of presentation produced different estimates of

P f,.r different initial states. Sone initial states increased their

estimates from one order to another, while others decreased their

estimates rakinq the same transition, and still others miaintained their

estimates for ho*h orders of presentation. From the results of the

analyses performed it seems that it is this find of pri .ess that caused

the. siqnificant order by init;31 state interaction.

In general the order of presentation was siqnificant at the .01

level. *!o interpretation of this result is possible since there seemed

to be no consistent differences between the orders. '1ore substantial

evidence is needed before any meaningful explanation can be given.

The significant interaction fo. type of state with power position

Is apparently due to the differeiice between the two first power positions.

The estimate of P for the first power position for state type L was much

lower than its counterpart for the K type states. The estimate of P

for this power position for the type L states is nuch lower than the

estimates of P for either of the other two power positions for either

sZate type. As opposed to the first power positions' estimates there

seemed to be ittle difference between the estimates of P for the two

lower power positions (see Figures 4 and ý).

The sinnificant main effect for state type is clouded by Itn highly

significant interaction with power position. The laroe difference

between the first power position of state type K and the same position

for state type L could cause the main effect for state type, The ex-

tremely low estimate of P (.49) for the first power position of state

type L drives down the estimate of P for the entire state type. Sitice



this reduction did not occur in the type K states, the first power

position could very well have caused the significant effect.

These analyses of the significant effects for state ti e illustrate

a tundamental difference between the type of play in the two states.

In the type K states the estimate of P indicates a predominant tendency

for all players to employ the fair play strateiy. The type L states,

however, differ from the type K states with respect to the action of

the fir3t power position. Th". power nosition seemed to fluctiate be-

tween the fair play or the dyadic competition strategies and the threat

minimization strategy, with the latter slightly favored over the former.

The reason for this difference between states is obvious when one looks

at the power structure of each state type. As pointed out previously,

the type L state is characterized by a power structure of one stronger

and two weaker players, and the power structure for the type K states

is characterized by two stronger players and one weaker player. In type

L states the two weaker players are equally threatening to the strongest

player and therefore the strongest player predominantly employs the

threat minimization strategy. The K type distributicns, however, hav'ý

two stronger players, each of wion ;s the greatest threat to-the other.

Peither oF the two stronger players can afford to attack the weakest for

an indefinite number of moves since the weakest player will attack him

in retaliation. This internal constraint anainst attacking the weakest

in the K type states produces different transitions aid estimates of P

fron those produced by the type L distributions.

The power structure (distribution) of the two types of states

seemed to produce different types of strategies for the first power



position, with the type K states tending to produce the fair play

strategy and the type L the threat minimization strategy. The two

strategies are indiscriminable for the two lower positions because they

result in the same attacks. This irdicates that two p,-ocesses are

involved in the truel, one for each type of state. Ignorine these dif-

ferences between the types of states the simple ,iodel was tested on

the entire data set.

The test of the model showed that there was no sinqge process

occurring in the truel. Therefore, the simple model proposed lid not,

in any way, capture the interpersonal process within the truel nor did

it mirror behavior in puro conflict situations. Contrary to exoecta-

tion, the participants did not blindly attack the stronger of their

attack choices.

Based on the results of the analyses on the estimates of P the

data were segreqated in various ways and the model was changed from one

having one parameter to one having three. rstlnjtes were made for the

three parameters, and transition equations generated for each of the

state types. These separations of the data generally resulted in a re-

duction of the chi-squares, but the reduction was not substantial

enough in any of <he cases to permit acceptance of the model. These

negative results indicated that even within types of states there was

no simp!e, single orocess operating.

If the piayers had used the strategies the analyses of the state

types indicated, then the fair olay model should have at least fit the

K type states where this type of strategy was the most prevalent. As

the analyses of the modei indicated, even the data from the K type of
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states ,.iere not reproducible by the model. In cieneral, the results of

the tests of the 'odel indicated th.at at least one type of process was

operating within each of the three types of states ,1efined (oure, mixed

K, and nixed L). These processes were not being caotured by the fair

play model nor its t'iree parameter variate. All atternts to select

particular types of states which produced correspondence between the

model and the data proved fruitless. Although there was a tendency

for higher levels of ').-S to oroduce larger chi-squares, it did not hold

consistently enough to produce any change in the fit of the model when

those states were excluJed from the analyses.

Since neither the proposed model nor its post hoc variation fit

the data, an additional examination of the results through a visaal

representation of the subjects response was performed. A, qeometic

representation of the state component system was previously developed

by Phillips, lartran, and Klein (117) )., recause all state vectors

can be represented 6y a pair of numbers It is possible to represent the

state component syste. in a two dimensional coordinate systen. Such

a representation is presented in Figure 9.

rigure 9 shows soec arbitrary state, (i,j), and the six possible

transitions from that state. Each of these chanjes corresponds to one

niven attack vector. For example the charnge fron (i,j) to (i'-1,j) is

alonq the a4is labcled J and corresponds to a J attack vector. A tran-

sition in the opposite direction, toward a 0i + 1, j) state, is 11onq

the J axis but toward the J 1 end. This tran3ition is caused by the

J attack vector. Similarly rovements along the other axes ai caused

by the correspondinq attack vectors. The seventh attick vector, 1, re-

suits in no transitioi frori any state vector.
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Figure 9. Representation of the State Component System.
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All possible state vectors can be represented in this coordinate

system. The state (0,I) falls at the origin of this system and any

attack vector moves the system in one of the six possible directions.

Because it has been stipulated that the distribution of points be

listed in s decreasing order of magnitude, only a limited area of this

coordinate system is needed. 'filth each state having j-I as a base,

only a 60 deqree wedge of the entire coordinate system is needed to

represent the state component system. Thus, all possible states

cor-espond to points within the region bounded by the dashed lines in

Figure 10. Those states falling directly on the J axis are pure states,

those falling above this axis are mixed K, and those falling below It

are mixed L.

Since the boundaries represent states the form (iJ 1, HK) or

(iJi ,iL) only moves which result in states of the form (i+l,i),(ii-l),

(i+l,i.-), or (0,i) ar'e possible. This is due to the fact that only

these transition states maintain the decreasing order in the distri--

bution of points. As was provenl in the development of the model. only

states which have the J component larger than the second component are

listed in a decreasing order of points. lovenents beyond these boundaries

result in states of the for': (i-l,i), (i,i+l), -r (i-!,i+l) and therefore

violate the restrlction that the pooncs be fisted in a decreasinn order

of magnitude, and, thus, these boundaries are impermeable.

The impermeability of the boundaries results in a reduced number

of possible transitions from those states that lie on or near to them.

Those states which lie on the boundaries have only four possible tr:,nsi-

tions. For exampit the point below, the J axis labeled (3,3) has only

lU• 1 • • nnnn • lmuun ln m mI
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three other reachable states (besides re" ininq at that state); (4,3),

(4,2), and (3,2). Since all attack vectors are still possible, it i:

necessary to introduce the term directional vector to deal with the

collapsing of attack vectors into one transition. The transition from

(3,3) to (3,2) is 'n a d~rection parallel to the L axis and in the L-|

direction alonr that axis. Thus, this transition will he referred to

as an L-I or an CL- directional vector. This dir:ctional vector wuld

occur w..henever an Il or J attack vector occ-irred. This can be verified

by noting that the lower (3,3) state represents a 3J- , 3L state. Thus,

an L".1 attack vector chanced the (3,3) state to a 3J 1, 2L state, while

the J attack vector changes the (3,3) state to a 2J" 1 , 3L state. Cy

virtue of iearrangeabiiity, those two states are equilvalently (3,2).

Those states which fall adjacent and Darallel to the boundaries

also have restricteý transition ranges. The (i-i,j+i) transition

violates the restriction that the polnts be in a descending order of

magnitude since the second component is larger than the fir'st. This

follows fron the fact that Ail states on this line are of the- form (l,i-I)

and a transition of the form (iil,j+l) would result in states of the

form (i-l,i) in which the first component is smaller than the second.

'$hen this state is rearranged a transition of the forn (i,i-1) is pro-

duced, the same transition that is produced by the I attack vector.

The (1,)) and (0,I) states also have restricted transition ranges.

The (1,0) s..te has five possible transitions with the (1,1) and (2,-1)

transition stares being undefined. The (0,0) state has two possible

transitions, the (1,0) state and the (0,I) statef all other transition

states are undefined.
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in ezch of the states presented above, the type of directional

vector is dtermined by the axis to which the vector is parallel. Fcr

those states wvich have no restrictions on the transition range, the

directional vectors are isomorphic to the attack vectors and, therefore,

take on the label of the attack vector that p oduced the transition. The

attack vectors correspond to the three axes, and the sign of their ex-

ponents corresponds to direction.

For the entire data set, a mean directional vector frcri each state

was calculated by the following method. A resultant directional vector

was calculated for each of the axes intersecting a state. Th!k vector

was represented by the lower case letter corresponding to its axis

(jk, or 1). The vectors were computeu by subtracting the probability

of the inverse directional vector from the probability of thcL directional

vector. As an example the resultant dirc:tional vector for the J axis

was the probability of the J directiona! vector minus the probability

of the J-1 directional vector. Each directional vector was calculated

by adding the probabilities of all thote attack vectors which contri-

buted to it. The directional vectors and those attack vectors which

contribute to their formation are presented in Table 23. Following are

the equations for the resultant directional vectors.

-iJ-I =t*J' -

P= K' - !(1

k L'L -LC

From the three resultant directional vectors a mean directional

vector was calculated for each state. 3y using the parallelogram law,

two coerdinates were determined from the three resultant directional

vectors. The x coordinate lies on a line which is parallel to the
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J axis and intercepts the state from wnich the mean directional vector

was being calculated. Type y coordinate lies on the line that is

orthogonal to the x axis and intercepts that state.

x - j - (COS. 60 degrees) (k + E)

y - (COS. 30 degrees) (k-

The j resultant directional vector contributes nothing to the y

coordinate because it is -,rthogcnal to the line on which y lies, while

the k and I resultant vectors contribute to octh coordinates. These

two coordinates describe the mean directional vector for each state

for which they were calculated. The meLn directional vectors were

calculated for all of the states presented in the wedge in Figure 10

and are presented In Figure 11.

This visual reresentation shows the diverse processes that are

operating when people engage In a true?. The strategies mentioned

previously can be identified by directional vectors, The fair play

strategy would be represented by the J directional vector. These

vectors are represented by dashed lines from each state, thus showing

how closely each state's mean directional vector corresponds to each

type of strategy. As the figure shows, the fair play stratcqy was

employed at the bowndries while the threat minimizatioa strategy was

employed In the !nner regions of the ledge. An exception to this was

the slight preference for the former strategy in the lover pure states.

At the extreme states, the threat minimization strategy was employed

more frequently than the fair play strategy, while this tendency re-

verse(; for those less extreue states.



rQo

~10

)bserveJ -
Threat linirilzation /
Fair MIay-,-

Fl ture I I. Thnr leain lbsc;rved irectional VJectors I the 'irectlon-il

Vfectors for the Fflr Play an~d Threat '~,t ilzction Stratc' iies.



These analyses indicate that at least two processes are involved

in the playing of the truel. The fact that the processes were not

separated along state type lines, but rather by proximity to boundaries

and extreme states, illustrates why separation of the data by state

type did not produce an acceptable fit of the model.

An interestiag point about the results was the fact that all In-

itial states of type L scd 1;1e three lower initial s'ates of type K have

threat minimization as tV edominant strategy, whereas the initial

states of (5J'l,3K), (5.-1,4'1 ) and (,1 1 ,!1) have the fair play strateqy

as the most predominant. The boundary of the K type states has two

stronger players of equ..l strenqth and therefore the fair play strategy

is that novement which Is paralle' to the K axis but In the K dir-

ection. I.hether the threat minimization strategy was employed at the

extreme states because they were initial states or because they repre-

sent some kind of threshold for the strongest player Is impossible to

determine from the data.

The threat minimization strategy and the fair play strategy have

p3rticular consequences for the distribution of points. The first

strategy results in the Increasing of the difference between the two

weaker players and a decreasing of the difference betwee~the two stronqer

players. This indicates a movement from two weaker players to two

stronger or a type K state. This tendency for a preference for the type

K states is clearly seen In Fiqure 11. The second tovement results in

the simultaneous decrease in both differences and therefore toward the

aii equal distribution.

Using the above analysis of the processes involved, some implica,



tions for Cap 1 cow's types of power structures can'be formulated. All

states which fall on the lower boundary represent the type three dis-

tribution of Caplow. These distributions have one strong nlayer and

two weak players, with the weak players equal in strength. Those states

which fall on the uooer boundary represent Caplow's type two distribu-

tion, with two strong olayers of equal strength and one weaker player.

All of those states which fall between these two boundaries represent

Caplow's type five struct,,re.

Although the interior distributions are technically type five's

they also resemble eithev a type two or a type three structure, with

the exception of the states on the J axis which resemble neither. Which

type of distribution a state resembles depends on the relativ- size of

the differences between the first and second Dower positions and the

second and third Dower positions. If the former difference Is larger

than the latter, th, distribution resembles a type three structure- if

the latter difference is larger, then the dist,,ibtition resembles a type

two structure.

The pure states are the exceptior, to the above discussion hecause

the differences betweer, the three power positions are equal. The ,ure

states are, thus the clearest type five power structure. Those distri-

butions which are found between the two boundaries in Fiqurcs I. mnd 11

form a continuum of Caplow's type five r(ower structure. These states

span the range from his k'ype two structure to his type three.

As Finure 11 indicates there are several different types of move-

ments within each type of power structure, \t the tywe thrre houndary

there are two types of moveients. one to',ird t le ty,xe oI ,istriliirion
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(all equal) and one toward the type two distribution. The latter move-

ment occurred when there were extreme differences between the power of

the three participants. Thiese points include the initial states for

the type L states. The former movement predominated on the boundary and

on the type five structures between the boundary and the J axis. In the

type two power structures the predominant movement was toward the type

one or all equal state. The exceptions to this were the states with

extreme differences between the participants, with these states moving

toward a pure type two power structure.

An interestinq result of this visual representation was to Indicate

that the triads in the Dure type five distributions preferred to move

toward a type two power structure than to a tyoe three structure. This

tendency to prefer type two distributions decreased as the DRS of the

state decreased, and the power structure approached the type one or all

equal state.

The implications for Caplow's types and for theories about qroun

processes in qeneral are quite clear. liven the opportunity to choose

between a type two distribution, characterized by two strong players

and one weak player, and a type three distribution, ckaracterize O by one

strong player and two weaker players, the triads, in this experiment,

preferred the former to the latter., In other words, groups prefer dis-

t, ibutions of points in whicl, there are two strona players of relatively

equal strength and one weak player with considerably less strenqth, to

distributions of one stron- r and two weaker players.

In summary, although tha model did not fit the data, it afforded

the opportunity to test hypotheses abcut conflI ct situatiows. There
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was much evidence to indicate that more than two processes were invol-

ved 'n these situations. Throuqh the test of the model and the visual

representation generated b, the model insiqhts into the interoersonal

process occur,-ing within the truel were obtained. The test of the model

allowed for the rejection of the single, simple assumpton that all

participants attack their stronger attack choice, and additional examina-

tion of the data explored more complex alternatives.

It is through this type of quantification, and Wxiomatization of

psychological orocesses, that allows for the acceptance or rejection

of theories. The results of this experiment indicate to what extent

even negative rvsults can advance knowledge. nespite the inability of

the model to predict the interpersonal processes of the truel, it

served well the functlon of vaWidating and testing the assumptions about

the processes. r- offered the framework within which it was possible

to define particular processes that were in operation within the truel

and it gave the opportunity to test other predictions about the processes

Involved.
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Instructions

This is an experiment in decision making. The experiment is a

game consisting of several moves and I will keep track of each move

that is made.

Ile will play several games. To begin each game, each player will

be assigned a specified number of points. These points will be dis-

played on the scoreboard behind me. For the first game player Argon will

have . oints, player Boron will have points, and player

Krypton will have __ points.

The game consists of moves, each move consisting of each of you

taking a point away from one of the other olayers. You are required to

take a point away on each move, but you may choose from which other

player. You may not take a point from yourself. 1fhen a point is

taken away from a player it belongs to no one and is taken out of the

game. 'hen a player lco,*es all of his points he is out of the game.

The game is ended when only one player has points remaining, he is the

winner. It is possible for no one to win, i e. two or more players

may run out of points on the sane move.

At the end of the experiment a number will be chosen at random

from this glass. This number- represents a game and the winner of that

game wins the three dollars. This number corresoonds to the order

in which the games were played, for instance if the number three were

chosen, the wirer of the third game would wir, 'he three dollars. Tne

other two player will receive 75C. If the nunber chosen represents a

game in which there was no winner, i.e. a tie, then all three of you will

receive 75g.
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The front of your cubical is open so you may see the scoreboard

and so you may communicate with me. In your cubicals there are three

cards with the three names that will be used in the experiment. It

is with these cards that you will indicate to me which of the other

two players you wish to attack. nn each move of the game hold up the

card with the nane of the player you choose. After you have indicated

who you wish to attack I will record your choice and then tell you to

put your cards down. I will then read who took a point from whom and

rerove the point from the board.

Some people like to keep track of which games they have won. It

is for this reason that the paper and pencils have been placed in your

cubicals.

The purpase of the partitions is to keep you from knowinq which

of the players the other names on the board represent, so please do not

talk or attempt to corynunicate, in any way, with the other players.

"olses also make you identifiahle to the other players, so please refrain

from making noises of any kind during or between games.

A•re there any questions? If not hold up the card with the oame

of the player you wish to attack on the first ;iove of the name.


